These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 34073303)

  • 1. Osmolyte Signatures for the Protection of
    Rodríguez-Pupo EC; Pérez-Llano Y; Tinoco-Valencia JR; Sánchez NS; Padilla-Garfias F; Calahorra M; Sánchez NDC; Sánchez-Reyes A; Rodríguez-Hernández MDR; Peña A; Sánchez O; Aguirre J; Batista-García RA; Folch-Mallol JL; Sánchez-Carbente MDR
    J Fungi (Basel); 2021 May; 7(6):. PubMed ID: 34073303
    [No Abstract]   [Full Text] [Related]  

  • 2. Haloadaptative Responses of
    Jiménez-Gómez I; Valdés-Muñoz G; Moreno-Perlin T; Mouriño-Pérez RR; Sánchez-Carbente MDR; Folch-Mallol JL; Pérez-Llano Y; Gunde-Cimerman N; Sánchez NDC; Batista-García RA
    J Fungi (Basel); 2020 Nov; 6(4):. PubMed ID: 33260894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress Reshapes the Physiological Response of Halophile Fungi to Salinity.
    Pérez-Llano Y; Rodríguez-Pupo EC; Druzhinina IS; Chenthamara K; Cai F; Gunde-Cimerman N; Zalar P; Gostinčar C; Kostanjšek R; Folch-Mallol JL; Batista-García RA; Sánchez-Carbente MDR
    Cells; 2020 Feb; 9(3):. PubMed ID: 32106416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surviving in the Brine: A Multi-Omics Approach for Understanding the Physiology of the Halophile Fungus
    Jiménez-Gómez I; Valdés-Muñoz G; Moreno-Ulloa A; Pérez-Llano Y; Moreno-Perlín T; Silva-Jiménez H; Barreto-Curiel F; Sánchez-Carbente MDR; Folch-Mallol JL; Gunde-Cimerman N; Lago-Lestón A; Batista-García RA
    Front Microbiol; 2022; 13():840408. PubMed ID: 35586858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic analysis of polyaromatic hydrocarbon degradation by the halophilic fungus Aspergillus sydowii at hypersaline conditions.
    Peidro-Guzmán H; Pérez-Llano Y; González-Abradelo D; Fernández-López MG; Dávila-Ramos S; Aranda E; Hernández DRO; García AO; Lira-Ruan V; Pliego OR; Santana MA; Schnabel D; Jiménez-Gómez I; Mouriño-Pérez RR; Aréchiga-Carvajal ET; Del Rayo Sánchez-Carbente M; Folch-Mallol JL; Sánchez-Reyes A; Vaidyanathan VK; Cabana H; Gunde-Cimerman N; Batista-García RA
    Environ Microbiol; 2021 Jul; 23(7):3435-3459. PubMed ID: 32666586
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Manfiolli AO; Mattos EC; de Assis LJ; Silva LP; Ulaş M; Brown NA; Silva-Rocha R; Bayram Ö; Goldman GH
    Front Microbiol; 2019; 10():918. PubMed ID: 31134001
    [No Abstract]   [Full Text] [Related]  

  • 7. Osmoadaptation strategy of the most halophilic fungus, Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl.
    Zajc J; Kogej T; Galinski EA; Ramos J; Gunde-Cimerman N
    Appl Environ Microbiol; 2014 Jan; 80(1):247-56. PubMed ID: 24162565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First demonstration that ascomycetous halophilic fungi (Aspergillus sydowii and Aspergillus destruens) are useful in xenobiotic mycoremediation under high salinity conditions.
    González-Abradelo D; Pérez-Llano Y; Peidro-Guzmán H; Sánchez-Carbente MDR; Folch-Mallol JL; Aranda E; Vaidyanathan VK; Cabana H; Gunde-Cimerman N; Batista-García RA
    Bioresour Technol; 2019 May; 279():287-296. PubMed ID: 30738355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of the High-Osmolarity Glycerol (HOG) Signaling Pathway from the Halophilic Fungus Wallemia ichthyophaga in Saccharomyces cerevisiae.
    Konte T; Terpitz U; Plemenitaš A
    Front Microbiol; 2016; 7():901. PubMed ID: 27379041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The HOG signal transduction pathway in the halophilic fungus Wallemia ichthyophaga: identification and characterisation of MAP kinases WiHog1A and WiHog1B.
    Konte T; Plemenitas A
    Extremophiles; 2013 Jul; 17(4):623-36. PubMed ID: 23712906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of glycerol accumulation, glycolysis and growth under hyper osmotic stress.
    Petelenz-Kurdziel E; Kuehn C; Nordlander B; Klein D; Hong KK; Jacobson T; Dahl P; Schaber J; Nielsen J; Hohmann S; Klipp E
    PLoS Comput Biol; 2013; 9(6):e1003084. PubMed ID: 23762021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cdc42-Specific GTPase-Activating Protein Rga1 Squelches Crosstalk between the High-Osmolarity Glycerol (HOG) and Mating Pheromone Response MAPK Pathways.
    Patterson JC; Goupil LS; Thorner J
    Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secondary Metabolites, Biological Activities, and Industrial and Biotechnological Importance of
    Ibrahim SRM; Mohamed SGA; Alsaadi BH; Althubyani MM; Awari ZI; Hussein HGA; Aljohani AA; Albasri JF; Faraj SA; Mohamed GA
    Mar Drugs; 2023 Aug; 21(8):. PubMed ID: 37623723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of the Hog1 MAPK by the Ssk2/Ssk22 MAP3Ks, in the absence of the osmosensors, is not sufficient to trigger osmostress adaptation in Saccharomyces cerevisiae.
    Vázquez-Ibarra A; Subirana L; Ongay-Larios L; Kawasaki L; Rojas-Ortega E; Rodríguez-González M; de Nadal E; Posas F; Coria R
    FEBS J; 2018 Mar; 285(6):1079-1096. PubMed ID: 29341399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systems biology analysis of long and short-term memories of osmotic stress adaptation in fungi.
    You T; Ingram P; Jacobsen MD; Cook E; McDonagh A; Thorne T; Lenardon MD; de Moura AP; Romano MC; Thiel M; Stumpf M; Gow NA; Haynes K; Grebogi C; Stark J; Brown AJ
    BMC Res Notes; 2012 May; 5():258. PubMed ID: 22631601
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Wang L; Chen R; Weng Q; Lin S; Wang H; Li L; Fuchs BB; Tan X; Mylonakis E
    Front Microbiol; 2020; 11():213. PubMed ID: 32153525
    [No Abstract]   [Full Text] [Related]  

  • 17. Morphological, transcriptional, and metabolic analyses of osmotic-adapted mechanisms of the halophilic Aspergillus montevidensis ZYD4 under hypersaline conditions.
    Ding X; Liu K; Lu Y; Gong G
    Appl Microbiol Biotechnol; 2019 May; 103(9):3829-3846. PubMed ID: 30859256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural adaptation of fungal cell wall in hypersaline environment.
    Fernando LD; Pérez-Llano Y; Dickwella Widanage MC; Jacob A; Martínez-Ávila L; Lipton AS; Gunde-Cimerman N; Latgé JP; Batista-García RA; Wang T
    Nat Commun; 2023 Nov; 14(1):7082. PubMed ID: 37925437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Resistance of the petroleum-oxidizing microorganism Dietzia sp. to hyperosmotic shock in reconstituted biofilms].
    Plakunov VK; Zhurina MV; Beliaev SS
    Mikrobiologiia; 2008; 77(5):581-9. PubMed ID: 19004337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osmoadaptive strategies of the archaeon Halococcus hamelinensis isolated from a hypersaline stromatolite environment.
    Goh F; Jeon YJ; Barrow K; Neilan BA; Burns BP
    Astrobiology; 2011; 11(6):529-36. PubMed ID: 21810017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.