BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34073542)

  • 1. Crosslinked Silk Fibroin/Gelatin/Hyaluronan Blends as Scaffolds for Cell-Based Tissue Engineering.
    Duangpakdee A; Laomeephol C; Jindatip D; Thongnuek P; Ratanavaraporn J; Damrongsakkul S
    Molecules; 2021 May; 26(11):. PubMed ID: 34073542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering.
    Garcia-Fuentes M; Meinel AJ; Hilbe M; Meinel L; Merkle HP
    Biomaterials; 2009 Oct; 30(28):5068-76. PubMed ID: 19564040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between gelatin concentrations in silk fibroin-based composite scaffolds and adhesion and proliferation of mouse embryo fibroblasts.
    Orlova AA; Kotlyarova MS; Lavrenov VS; Volkova SV; Arkhipova AY
    Bull Exp Biol Med; 2014 Nov; 158(1):88-91. PubMed ID: 25403405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural biomacromolecule based composite scaffolds from silk fibroin, gelatin and chitosan toward tissue engineering applications.
    Asadpour S; Kargozar S; Moradi L; Ai A; Nosrati H; Ai J
    Int J Biol Macromol; 2020 Jul; 154():1285-1294. PubMed ID: 31733251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green process to prepare silk fibroin/gelatin biomaterial scaffolds.
    Lu Q; Zhang X; Hu X; Kaplan DL
    Macromol Biosci; 2010 Mar; 10(3):289-98. PubMed ID: 19924684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of functionalized citrus pectin/silk fibroin scaffolds for skin tissue engineering.
    Türkkan S; Atila D; Akdağ A; Tezcaner A
    J Biomed Mater Res B Appl Biomater; 2018 Oct; 106(7):2625-2635. PubMed ID: 29360269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications.
    Olami H; Zilberman M
    J Biomater Appl; 2016 Feb; 30(7):1004-15. PubMed ID: 26526932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Balanced electrostatic blending approach--an alternative to chemical crosslinking of Thai silk fibroin/gelatin scaffold.
    Jetbumpenkul P; Amornsudthiwat P; Kanokpanont S; Damrongsakkul S
    Int J Biol Macromol; 2012 Jan; 50(1):7-13. PubMed ID: 21983026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A porous hydrogel-electrospun composite scaffold made of oxidized alginate/gelatin/silk fibroin for tissue engineering application.
    Hajiabbas M; Alemzadeh I; Vossoughi M
    Carbohydr Polym; 2020 Oct; 245():116465. PubMed ID: 32718603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonmineralized and Mineralized Silk Fibroin/Gelatin Hybrid Scaffolds: Chacterization and Cytocompatibility In Vitro for Bone-Tissue Engineering.
    Meng X; Gong K; Sun C; Liu D; Du P; Xu D
    J Craniofac Surg; 2020; 31(2):416-419. PubMed ID: 31764552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration.
    Wang Y; Bella E; Lee CS; Migliaresi C; Pelcastre L; Schwartz Z; Boyan BD; Motta A
    Biomaterials; 2010 Jun; 31(17):4672-81. PubMed ID: 20303584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun biomimic nanofibrous scaffolds of silk fibroin/hyaluronic acid for tissue engineering.
    Zhang K; Fan L; Yan Z; Yu Q; Mo X
    J Biomater Sci Polym Ed; 2012; 23(9):1185-98. PubMed ID: 21722417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modification of Thai silk fibroin scaffolds with gelatin and chitooligosaccharide for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells.
    Wongputtaraksa T; Ratanavaraporn J; Pichyangkura R; Damrongsakkul S
    J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2307-15. PubMed ID: 23015285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application.
    Vishwanath V; Pramanik K; Biswas A
    J Biomater Sci Polym Ed; 2016; 27(7):657-74. PubMed ID: 26830046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between crosslinking structure and silk fibroin scaffold performance for soft tissue engineering.
    Mao Z; Bi X; Ye F; Du P; Shu X; Sun L; Guan J; Li X; Wu S
    Int J Biol Macromol; 2021 Jul; 182():1268-1277. PubMed ID: 33984385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailorable hydrogel of gelatin with silk fibroin and its activation/crosslinking for enhanced proliferation of fibroblast cells.
    Kulkarni G; Guha Ray P; Byram PK; Kaushal M; Dhara S; Das S
    Int J Biol Macromol; 2020 Dec; 164():4073-4083. PubMed ID: 32898545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration.
    Ribeiro VP; da Silva Morais A; Maia FR; Canadas RF; Costa JB; Oliveira AL; Oliveira JM; Reis RL
    Acta Biomater; 2018 May; 72():167-181. PubMed ID: 29626700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application.
    Zhang K; Qian Y; Wang H; Fan L; Huang C; Yin A; Mo X
    J Biomed Mater Res A; 2010 Dec; 95(3):870-81. PubMed ID: 20824649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of poly(lactic-co-glycolic acid) scaffolds containing silk fibroin scaffolds for tissue engineering applications.
    Ju HW; Sheikh FA; Moon BM; Park HJ; Lee OJ; Kim JH; Eun JJ; Khang G; Park CH
    J Biomed Mater Res A; 2014 Aug; 102(8):2713-24. PubMed ID: 24026912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silk fibroin/hyaluronic acid 3D matrices for cartilage tissue engineering.
    Foss C; Merzari E; Migliaresi C; Motta A
    Biomacromolecules; 2013 Jan; 14(1):38-47. PubMed ID: 23134349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.