These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 34073542)
41. Three-dimensional silk fibroin-gelatin/chondroitin sulfate/hyaluronic acid-aloe vera scaffold supports in vitro chondrogenesis of bone marrow mesenchymal stem cells and reduces inflammatory effect. Wuttisiriboon K; Tippayawat P; Daduang J; Limpaiboon T J Biomed Mater Res B Appl Biomater; 2023 Aug; 111(8):1557-1570. PubMed ID: 36988305 [TBL] [Abstract][Full Text] [Related]
42. Production of Composite Scaffold Containing Silk Fibroin, Chitosan, and Gelatin for 3D Cell Culture and Bone Tissue Regeneration. Li J; Wang Q; Gu Y; Zhu Y; Chen L; Chen Y Med Sci Monit; 2017 Nov; 23():5311-5320. PubMed ID: 29114098 [TBL] [Abstract][Full Text] [Related]
43. Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. Kim HW; Knowles JC; Kim HE J Biomed Mater Res A; 2005 Feb; 72(2):136-45. PubMed ID: 15549783 [TBL] [Abstract][Full Text] [Related]
44. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds. Sun K; Li R; Jiang W; Sun Y; Li H Biochem Biophys Res Commun; 2016 Sep; 477(4):1085-1091. PubMed ID: 27404126 [TBL] [Abstract][Full Text] [Related]
45. Fabrication of highly interconnected porous silk fibroin scaffolds for potential use as vascular grafts. Zhu M; Wang K; Mei J; Li C; Zhang J; Zheng W; An D; Xiao N; Zhao Q; Kong D; Wang L Acta Biomater; 2014 May; 10(5):2014-23. PubMed ID: 24486642 [TBL] [Abstract][Full Text] [Related]
46. Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering. Gui-Bo Y; You-Zhu Z; Shu-Dong W; De-Bing S; Zhi-Hui D; Wei-Guo F J Biomed Mater Res A; 2010 Apr; 93(1):158-63. PubMed ID: 19536837 [TBL] [Abstract][Full Text] [Related]
47. Preparation of porous scaffolds from silk fibroin extracted from the silk gland of Bombyx mori (B. mori). Yang M; Shuai Y; He W; Min S; Zhu L Int J Mol Sci; 2012; 13(6):7762-7775. PubMed ID: 22837725 [TBL] [Abstract][Full Text] [Related]
48. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities. Sangkert S; Meesane J; Kamonmattayakul S; Chai WL Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1138-49. PubMed ID: 26478414 [TBL] [Abstract][Full Text] [Related]
49. Silk fibroin-keratin based 3D scaffolds as a dermal substitute for skin tissue engineering. Bhardwaj N; Sow WT; Devi D; Ng KW; Mandal BB; Cho NJ Integr Biol (Camb); 2015 Jan; 7(1):53-63. PubMed ID: 25372050 [TBL] [Abstract][Full Text] [Related]
50. The use of hyaluronan to regulate protein adsorption and cell infiltration in nanofibrous scaffolds. Li L; Qian Y; Jiang C; Lv Y; Liu W; Zhong L; Cai K; Li S; Yang L Biomaterials; 2012 Apr; 33(12):3428-45. PubMed ID: 22300743 [TBL] [Abstract][Full Text] [Related]
51. The effect of hyaluronic acid on biofunctionality of gelatin-collagen intestine tissue engineering scaffolds. Shabafrooz V; Mozafari M; Köhler GA; Assefa S; Vashaee D; Tayebi L J Biomed Mater Res A; 2014 Sep; 102(9):3130-9. PubMed ID: 24132994 [TBL] [Abstract][Full Text] [Related]
52. Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique. Lv Q; Feng Q J Mater Sci Mater Med; 2006 Dec; 17(12):1349-56. PubMed ID: 17143767 [TBL] [Abstract][Full Text] [Related]
53. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering. Zeng C; Yang Q; Zhu M; Du L; Zhang J; Ma X; Xu B; Wang L Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():232-40. PubMed ID: 24582244 [TBL] [Abstract][Full Text] [Related]
54. Synthesis and fabrication of novel quinone-based chromenopyrazole antioxidant-laden silk fibroin nanofibers scaffold for tissue engineering applications. Kandhasamy S; Arthi N; Arun RP; Verma RS Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():773-787. PubMed ID: 31147050 [TBL] [Abstract][Full Text] [Related]
55. Cell proliferation and migration in silk fibroin 3D scaffolds. Mandal BB; Kundu SC Biomaterials; 2009 May; 30(15):2956-65. PubMed ID: 19249094 [TBL] [Abstract][Full Text] [Related]
56. Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: Morphological, mechanical, and physical clues. Jaipaew J; Wangkulangkul P; Meesane J; Raungrut P; Puttawibul P Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():173-182. PubMed ID: 27127042 [TBL] [Abstract][Full Text] [Related]
57. Development of artificial dermis using 3D electrospun silk fibroin nanofiber matrix. Lee OJ; Ju HW; Kim JH; Lee JM; Ki CS; Kim JH; Moon BM; Park HJ; Sheikh FA; Park CH J Biomed Nanotechnol; 2014 Jul; 10(7):1294-303. PubMed ID: 24804550 [TBL] [Abstract][Full Text] [Related]
58. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055 [TBL] [Abstract][Full Text] [Related]
59. Development of 3D scaffolds using nanochitosan/silk-fibroin/hyaluronic acid biomaterials for tissue engineering applications. S G; T G; K V; Faleh A A; Sukumaran A; P N S Int J Biol Macromol; 2018 Dec; 120(Pt A):876-885. PubMed ID: 30171951 [TBL] [Abstract][Full Text] [Related]
60. Aerogel sponges of silk fibroin, hyaluronic acid and heparin for soft tissue engineering: Composition-properties relationship. Najberg M; Haji Mansor M; Taillé T; Bouré C; Molina-Peña R; Boury F; Cenis JL; Garcion E; Alvarez-Lorenzo C Carbohydr Polym; 2020 Jun; 237():116107. PubMed ID: 32241442 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]