These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34073606)

  • 1. Analysis of Compositional Gradients in Cu(In,Ga)(S,Se)
    Künecke U; Schuster M; Wellmann P
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34073606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voids and compositional inhomogeneities in Cu(In,Ga)Se
    Avancini E; Keller D; Carron R; Arroyo-Rojas Dasilva Y; Erni R; Priebe A; Di Napoli S; Carrisi M; Sozzi G; Menozzi R; Fu F; Buecheler S; Tiwari AN
    Sci Technol Adv Mater; 2018; 19(1):871-882. PubMed ID: 30479675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfur-Alloying Effects on Cu(In,Ga)(S,Se)
    Kim S; Mina MS; Lee J; Kim J
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45702-45708. PubMed ID: 31718124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive comparison of various techniques for the analysis of elemental distributions in thin films.
    Abou-Ras D; Caballero R; Fischer CH; Kaufmann CA; Lauermann I; Mainz R; Mönig H; Schöpke A; Stephan C; Streeck C; Schorr S; Eicke A; Döbeli M; Gade B; Hinrichs J; Nunney T; Dijkstra H; Hoffmann V; Klemm D; Efimova V; Bergmaier A; Dollinger G; Wirth T; Unger W; Rockett AA; Perez-Rodriguez A; Alvarez-Garcia J; Izquierdo-Roca V; Schmid T; Choi PP; Müller M; Bertram F; Christen J; Khatri H; Collins RW; Marsillac S; Kötschau I
    Microsc Microanal; 2011 Oct; 17(5):728-51. PubMed ID: 21906418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Analysis and Band Gap Determination for CIGS Absorber Layers Using Surface Techniques.
    Jang YJ; Lee J; Lee KB; Kim D; Lee Y
    J Anal Methods Chem; 2018; 2018():6751964. PubMed ID: 30420936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructural Characterization of Sulfurization Effects in Cu(In,Ga)Se2 Thin Film Solar Cells.
    Aboulfadl H; Keller J; Larsen J; Thuvander M; Riekehr L; Edoff M; Platzer-Björkman C
    Microsc Microanal; 2019 Apr; 25(2):532-538. PubMed ID: 30853031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface Formation between CdS and Alkali Postdeposition-Treated Cu(In,Ga)Se
    Yang P; Wilks RG; Yang W; Bär M
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6688-6698. PubMed ID: 31912731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic investigation of the deeply buried Cu(In,Ga)(S,Se)2/Mo interface in thin-film solar cells.
    Weinhardt L; Fuchs O; Peter A; Umbach E; Heske C; Reichardt J; Bär M; Lauermann I; Kötschau I; Grimm A; Sokoll S; Lux-Steiner MCh; Niesen TP; Visbeck S; Karg F
    J Chem Phys; 2006 Feb; 124(7):74705. PubMed ID: 16497068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depth-Profiling Electronic and Structural Properties of Cu(In,Ga)(S,Se)2 Thin-Film Solar Cell.
    Chiang CY; Hsiao SW; Wu PJ; Yang CS; Chen CH; Chou WC
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):24152-60. PubMed ID: 27505175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency Improvement of Narrow Band Gap Cu(In,Ga)(S,Se)
    Mina MS; Enkhbayar E; Otgontamir N; Kim S; Kim J
    ACS Appl Mater Interfaces; 2023 May; 15(19):23199-23207. PubMed ID: 37141630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NaF/RbF-Treated Cu(In,Ga)Se
    Bombsch J; Avancini E; Carron R; Handick E; Garcia-Diez R; Hartmann C; Félix R; Ueda S; Wilks RG; Bär M
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34941-34948. PubMed ID: 32633119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cu(In,Ga)(S,Se)₂ thin film solar cell with 10.7% conversion efficiency obtained by selenization of the Na-doped spray-pyrolyzed sulfide precursor film.
    Septina W; Kurihara M; Ikeda S; Nakajima Y; Hirano T; Kawasaki Y; Harada T; Matsumura M
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6472-9. PubMed ID: 25774908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of ICP-OES to the determination of CuIn(1-x)Ga(x)Se2 thin films used as absorber materials in solar cell devices.
    Fernández-Martínez R; Caballero R; Guillén C; Gutiérrez MT; Rucandio MI
    Anal Bioanal Chem; 2005 May; 382(2):466-70. PubMed ID: 15702309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boosting Solar Cell Performance via Centrally Localized Ag in Solution-Processed Cu(In,Ga)(S,Se)
    Kim B; Park GS; Kim JH; Park SY; Kim DS; Lee DK; Won DH; Kwon S; Kim DW; Kang Y; Jeong C; Min BK
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36082-36091. PubMed ID: 32664721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complementary Characterization of Cu(In,Ga)Se₂ Thin-Film Photovoltaic Cells Using Secondary Ion Mass Spectrometry, Auger Electron Spectroscopy, and Atom Probe Tomography.
    Jang YJ; Lee J; Jeong JH; Lee KB; Kim D; Lee Y
    J Nanosci Nanotechnol; 2018 May; 18(5):3548-3556. PubMed ID: 29442865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of energy band alignment at the Zn(1-x)Mg(x)O/Cu(In,Ga)Se2 interface for Cd-free Cu(In,Ga)Se2 solar cells.
    Lee CS; Larina L; Shin YM; Al-Ammar EA; Ahn BT
    Phys Chem Chem Phys; 2012 Apr; 14(14):4789-95. PubMed ID: 22382807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled electrodeposition of Cu-Ga from a deep eutectic solvent for low cost fabrication of CuGaSe2 thin film solar cells.
    Steichen M; Thomassey M; Siebentritt S; Dale PJ
    Phys Chem Chem Phys; 2011 Mar; 13(10):4292-302. PubMed ID: 21249244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Traceable Quantitative Raman Microscopy and X-ray Fluorescence Analysis as Nondestructive Methods for the Characterization of Cu(In,Ga)Se2 Absorber Films.
    Zakel S; Pollakowski B; Streeck C; Wundrack S; Weber A; Brunken S; Mainz R; Beckhoff B; Stosch R
    Appl Spectrosc; 2016 Feb; 70(2):279-88. PubMed ID: 26903563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Matrix Elements and Trace Impurities in Cu(In, Ga)Se2 Photovoltaic Absorbers Using Surface Analytical Techniques.
    Kim MJ; Lee J; Kim SH; Kim H; Lee KB; Lee Y
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7722-6. PubMed ID: 26726401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Passivation and Detrimental Heat-Induced Diffusion Effects in RbF-Treated Cu(In,Ga)Se
    Elizabeth A; Sahoo SK; Phirke H; Kodalle T; Kühne TD; Audinot JN; Wirtz T; Redinger A; Kaufmann CA; Mirhosseini H; Mönig H
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35848892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.