BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34073702)

  • 1. High-Throughput Sequencing of Phage Display Libraries Reveals Parasitic Enrichment of Indel Mutants Caused by Amplification Bias.
    Plessers S; Van Deuren V; Lavigne R; Robben J
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Deep Sequencing in Phage Display.
    Van Deuren V; Plessers S; Lavigne R; Robben J
    Methods Mol Biol; 2024; 2738():333-345. PubMed ID: 37966608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep sequencing analysis of phage libraries using Illumina platform.
    Matochko WL; Chu K; Jin B; Lee SW; Whitesides GM; Derda R
    Methods; 2012 Sep; 58(1):47-55. PubMed ID: 22819855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prospective identification of parasitic sequences in phage display screens.
    Matochko WL; Cory Li S; Tang SK; Derda R
    Nucleic Acids Res; 2014 Feb; 42(3):1784-98. PubMed ID: 24217917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Next Generation Sequencing (NGS) in Phage Displayed Peptide Selection to Support the Identification of Arsenic-Binding Motifs.
    Braun R; Schönberger N; Vinke S; Lederer F; Kalinowski J; Pollmann K
    Viruses; 2020 Nov; 12(12):. PubMed ID: 33261041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Error analysis of deep sequencing of phage libraries: peptides censored in sequencing.
    Matochko WL; Derda R
    Comput Math Methods Med; 2013; 2013():491612. PubMed ID: 24416071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection of target-binding proteins from the information of weakly enriched phage display libraries by deep sequencing and machine learning.
    Ito T; Nguyen TD; Saito Y; Kurumida Y; Nakazawa H; Kawada S; Nishi H; Tsuda K; Kameda T; Umetsu M
    MAbs; 2023; 15(1):2168470. PubMed ID: 36683172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth of Sequencing Plays a Determining Role in the Characterization of Phage Display Peptide Libraries by NGS.
    Sloth AB; Bakhshinejad B; Stavnsbjerg C; Rossing M; Kjaer A
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next-generation sequencing enables the discovery of more diverse positive clones from a phage-displayed antibody library.
    Yang W; Yoon A; Lee S; Kim S; Han J; Chung J
    Exp Mol Med; 2017 Mar; 49(3):e308. PubMed ID: 28336957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Identification of Murine M2 Macrophage Peptide Targeting Ligands by Phage Display and Next-Generation Sequencing.
    Liu GW; Livesay BR; Kacherovsky NA; Cieslewicz M; Lutz E; Waalkes A; Jensen MC; Salipante SJ; Pun SH
    Bioconjug Chem; 2015 Aug; 26(8):1811-7. PubMed ID: 26161996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective enrichment and high-throughput screening of phage surface-displayed cDNA libraries from complex allergenic systems.
    Crameri R; Walter G
    Comb Chem High Throughput Screen; 1999 Apr; 2(2):63-72. PubMed ID: 10420976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagation Capacity of Phage Display Peptide Libraries Is Affected by the Length and Conformation of Displayed Peptide.
    Kamstrup Sell D; Sinkjaer AW; Bakhshinejad B; Kjaer A
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the Properties of Phage Display Fab Libraries and Their Use in the Selection of Gliadin-Specific Probes by Applying High-Throughput Nanopore Sequencing.
    Garcia-Calvo E; García-García A; Rodríguez S; Martín R; García T
    Viruses; 2024 Apr; 16(5):. PubMed ID: 38793567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining phage display with SMRTbell next-generation sequencing for the rapid discovery of functional scFv fragments.
    Nannini F; Senicar L; Parekh F; Kong KJ; Kinna A; Bughda R; Sillibourne J; Hu X; Ma B; Bai Y; Ferrari M; Pule MA; Onuoha SC
    MAbs; 2021; 13(1):1864084. PubMed ID: 33382949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phage display of the serpin alpha-1 proteinase inhibitor randomized at consecutive residues in the reactive centre loop and biopanned with or without thrombin.
    Scott BM; Matochko WL; Gierczak RF; Bhakta V; Derda R; Sheffield WP
    PLoS One; 2014; 9(1):e84491. PubMed ID: 24427287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Compositional Bias in a Commercial Phage Display Peptide Library by Next-Generation Sequencing.
    Sloth AB; Bakhshinejad B; Jensen M; Stavnsbjerg C; Liisberg MB; Rossing M; Kjaer A
    Viruses; 2022 Oct; 14(11):. PubMed ID: 36366500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxford nanopore sequencing enables rapid discovery of single-domain antibodies from phage display libraries.
    Lowden MJ; Henry KA
    Biotechniques; 2018 Dec; 65(6):351-356. PubMed ID: 30477332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep sequencing of phage display libraries to support antibody discovery.
    Ravn U; Didelot G; Venet S; Ng KT; Gueneau F; Rousseau F; Calloud S; Kosco-Vilbois M; Fischer N
    Methods; 2013 Mar; 60(1):99-110. PubMed ID: 23500657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep mining of antibody phage-display selections using Oxford Nanopore Technologies and Dual Unique Molecular Identifiers.
    Mejias-Gomez O; Braghetto M; Sørensen MKD; Madsen AV; Guiu LS; Kristensen P; Pedersen LE; Goletz S
    N Biotechnol; 2024 May; 80():56-68. PubMed ID: 38354946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand Selection for Affinity Chromatography Using Phage Display.
    Bozovičar K; Molek P; Bizjan BJ; Bratkovič T
    Methods Mol Biol; 2022; 2466():159-185. PubMed ID: 35585318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.