These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 34073758)

  • 1. Genome Reduction and Secondary Metabolism of the Marine Sponge-Associated Cyanobacterium
    Konstantinou D; Popin RV; Fewer DP; Sivonen K; Gkelis S
    Mar Drugs; 2021 May; 19(6):. PubMed ID: 34073758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leptothoe, a new genus of marine cyanobacteria (Synechococcales) and three new species associated with sponges from the Aegean Sea.
    Konstantinou D; Voultsiadou E; Panteris E; Zervou SK; Hiskia A; Gkelis S
    J Phycol; 2019 Aug; 55(4):882-897. PubMed ID: 31001838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Genomics of Cyanobacterial Symbionts Reveals Distinct, Specialized Metabolism in Tropical
    Schorn MA; Jordan PA; Podell S; Blanton JM; Agarwal V; Biggs JS; Allen EE; Moore BS
    mBio; 2019 May; 10(3):. PubMed ID: 31088928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole Genome Sequencing of the Symbiont Pseudovibrio sp. from the Intertidal Marine Sponge Polymastia penicillus Revealed a Gene Repertoire for Host-Switching Permissive Lifestyle.
    Alex A; Antunes A
    Genome Biol Evol; 2015 Oct; 7(11):3022-32. PubMed ID: 26519859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lifestyle evolution in cyanobacterial symbionts of sponges.
    Burgsdorf I; Slaby BM; Handley KM; Haber M; Blom J; Marshall CW; Gilbert JA; Hentschel U; Steindler L
    mBio; 2015 Jun; 6(3):e00391-15. PubMed ID: 26037118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioprospecting Sponge-Associated Marine Cyanobacteria to Produce Bioactive Compounds.
    Konstantinou D; Mavrogonatou E; Zervou SK; Giannogonas P; Gkelis S
    Toxins (Basel); 2020 Jan; 12(2):. PubMed ID: 31979262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symbiotic adaptation drives genome streamlining of the cyanobacterial sponge symbiont "Candidatus Synechococcus spongiarum".
    Gao ZM; Wang Y; Tian RM; Wong YH; Batang ZB; Al-Suwailem AM; Bajic VB; Qian PY
    mBio; 2014 Apr; 5(2):e00079-14. PubMed ID: 24692632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unusual symbiotic cyanobacteria association in the genetically diverse intertidal marine sponge Hymeniacidon perlevis (Demospongiae, Halichondrida).
    Alex A; Vasconcelos V; Tamagnini P; Santos A; Antunes A
    PLoS One; 2012; 7(12):e51834. PubMed ID: 23251637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructure, molecular phylogenetics, and chlorophyll a content of novel cyanobacterial symbionts in temperate sponges.
    Erwin PM; López-Legentil S; Turon X
    Microb Ecol; 2012 Oct; 64(3):771-83. PubMed ID: 22526400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Genomics Highlights Symbiotic Capacities and High Metabolic Flexibility of the Marine Genus Pseudovibrio.
    Versluis D; Nijsse B; Naim MA; Koehorst JJ; Wiese J; Imhoff JF; Schaap PJ; van Passel MWJ; Smidt H; Sipkema D
    Genome Biol Evol; 2018 Jan; 10(1):125-142. PubMed ID: 29319806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential Interactions between Clade SUP05 Sulfur-Oxidizing Bacteria and Phages in Hydrothermal Vent Sponges.
    Zhou K; Zhang R; Sun J; Zhang W; Tian RM; Chen C; Kawagucci S; Xu Y
    Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31492669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic insights into symbiosis and host adaptation of sponge-associated novel bacterium, Rossellomorea orangium sp. nov.
    Umar M; Merlin TS; Puthiyedathu Sajeevan T
    FEMS Microbiol Lett; 2024 Jan; 371():. PubMed ID: 39304531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metagenomic Exploration of the Marine Sponge
    Storey MA; Andreassend SK; Bracegirdle J; Brown A; Keyzers RA; Ackerley DF; Northcote PT; Owen JG
    mBio; 2020 Mar; 11(2):. PubMed ID: 32209692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life at Home and on the Roam: Genomic Adaptions Reflect the Dual Lifestyle of an Intracellular, Facultative Symbiont.
    Burgsdorf I; Handley KM; Bar-Shalom R; Erwin PM; Steindler L
    mSystems; 2019; 4(4):. PubMed ID: 31086829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metagenomic Analysis of the Sponge Discodermia Reveals the Production of the Cyanobacterial Natural Product Kasumigamide by 'Entotheonella'.
    Nakashima Y; Egami Y; Kimura M; Wakimoto T; Abe I
    PLoS One; 2016; 11(10):e0164468. PubMed ID: 27732651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus sequestration in the form of polyphosphate by microbial symbionts in marine sponges.
    Zhang F; Blasiak LC; Karolin JO; Powell RJ; Geddes CD; Hill RT
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4381-6. PubMed ID: 25713351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marine Sponges as
    Bayer K; Jahn MT; Slaby BM; Moitinho-Silva L; Hentschel U
    mSystems; 2018; 3(6):. PubMed ID: 30637337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diverse and Abundant Secondary Metabolism Biosynthetic Gene Clusters in the Genomes of Marine Sponge Derived Streptomyces spp. Isolates.
    Jackson SA; Crossman L; Almeida EL; Margassery LM; Kennedy J; Dobson ADW
    Mar Drugs; 2018 Feb; 16(2):. PubMed ID: 29461500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic insights into the marine sponge microbiome.
    Hentschel U; Piel J; Degnan SM; Taylor MW
    Nat Rev Microbiol; 2012 Sep; 10(9):641-54. PubMed ID: 22842661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome mining for natural product biosynthetic gene clusters in the Subsection V cyanobacteria.
    Micallef ML; D'Agostino PM; Sharma D; Viswanathan R; Moffitt MC
    BMC Genomics; 2015 Sep; 16(1):669. PubMed ID: 26335778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.