These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 34073806)
1. Utilization of Micro-Doppler Radar to Classify Gait Patterns of Young and Elderly Adults: An Approach Using a Long Short-Term Memory Network. Hayashi S; Saho K; Shioiri K; Fujimoto M; Masugi M Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073806 [TBL] [Abstract][Full Text] [Related]
2. Radar Sensing for Activity Classification in Elderly People Exploiting Micro-Doppler Signatures Using Machine Learning. Taylor W; Dashtipour K; Shah SA; Hussain A; Abbasi QH; Imran MA Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199814 [TBL] [Abstract][Full Text] [Related]
3. Experimental Verification of Micro-Doppler Radar Measurements of Fall-Risk-Related Gait Differences for Community-Dwelling Elderly Adults. Saho K; Fujimoto M; Kobayashi Y; Matsumoto M Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161674 [TBL] [Abstract][Full Text] [Related]
4. Millimeter-Wave Array Radar-Based Human Gait Recognition Using Multi-Channel Three-Dimensional Convolutional Neural Network. Jiang X; Zhang Y; Yang Q; Deng B; Wang H Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32977650 [TBL] [Abstract][Full Text] [Related]
5. Toward Unobtrusive In-Home Gait Analysis Based on Radar Micro-Doppler Signatures. Seifert AK; Amin MG; Zoubir AM IEEE Trans Biomed Eng; 2019 Sep; 66(9):2629-2640. PubMed ID: 30668460 [TBL] [Abstract][Full Text] [Related]
6. Machine Learning-Based Classification of Human Behaviors and Falls in Restroom via Dual Doppler Radar Measurements. Saho K; Hayashi S; Tsuyama M; Meng L; Masugi M Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270868 [TBL] [Abstract][Full Text] [Related]
7. Doppler Radar Sensor-Based Fall Detection Using a Convolutional Bidirectional Long Short-Term Memory Model. Li Z; Du J; Zhu B; Greenwald SE; Xu L; Yao Y; Bao N Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205059 [TBL] [Abstract][Full Text] [Related]
8. Towards a Low-Cost Solution for Gait Analysis Using Millimeter Wave Sensor and Machine Learning. Alanazi MA; Alhazmi AK; Alsattam O; Gnau K; Brown M; Thiel S; Jackson K; Chodavarapu VP Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35897975 [TBL] [Abstract][Full Text] [Related]
9. Computer Vision and Machine Learning-Based Gait Pattern Recognition for Flat Fall Prediction. Chen B; Chen C; Hu J; Sayeed Z; Qi J; Darwiche HF; Little BE; Lou S; Darwish M; Foote C; Palacio-Lascano C Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298311 [TBL] [Abstract][Full Text] [Related]
10. Screening of apathetic elderly adults using kinematic information in gait and sit-to-stand/stand-to-sit movements measured with Doppler radar. Saho K; Sugano K; Uemura K; Matsumoto M Health Informatics J; 2021; 27(1):1460458221990051. PubMed ID: 33509024 [TBL] [Abstract][Full Text] [Related]
11. Doppler Radar for the Extraction of Biomechanical Parameters in Gait Analysis. Seifert AK; Grimmer M; Zoubir AM IEEE J Biomed Health Inform; 2021 Feb; 25(2):547-558. PubMed ID: 32406849 [TBL] [Abstract][Full Text] [Related]
12. Comparative Analysis of Audio Processing Techniques on Doppler Radar Signature of Human Walking Motion Using CNN Models. Ha MK; Phan TL; Nguyen DHH; Quan NH; Ha-Phan NQ; Ching CTS; Hieu NV Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960447 [TBL] [Abstract][Full Text] [Related]
13. Apathy Classification Based on Doppler Radar Image for the Elderly Person. Nojiri N; Meng Z; Saho K; Duan Y; Uemura K; Aravinda CV; Prabhu GA; Shimakawa H; Meng L Front Bioeng Biotechnol; 2020; 8():553847. PubMed ID: 33224927 [TBL] [Abstract][Full Text] [Related]
14. Space Target Classification Improvement by Generating Micro-Doppler Signatures Considering Incident Angle. Lee JI; Kim N; Min S; Kim J; Jeong DK; Seo DW Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214555 [TBL] [Abstract][Full Text] [Related]
15. Walking Step Monitoring with a Millimeter-Wave Radar in Real-Life Environment for Disease and Fall Prevention for the Elderly. Zeng X; Báruson HSL; Sundvall A Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560270 [TBL] [Abstract][Full Text] [Related]
16. Exploration of Effective Time-Velocity Distribution for Doppler-Radar-Based Personal Gait Identification Using Deep Learning. Shioiri K; Saho K Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679401 [TBL] [Abstract][Full Text] [Related]
17. Quantitative gait measurement with pulse-Doppler radar for passive in-home gait assessment. Wang F; Skubic M; Rantz M; Cuddihy PE IEEE Trans Biomed Eng; 2014 Sep; 61(9):2434-43. PubMed ID: 24771566 [TBL] [Abstract][Full Text] [Related]
18. Temporal Convolutional Neural Networks for Radar Micro-Doppler Based Gait Recognition. Addabbo P; Bernardi ML; Biondi F; Cimitile M; Clemente C; Orlando D Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430474 [TBL] [Abstract][Full Text] [Related]
20. Deep Learning Multi-Class Approach for Human Fall Detection Based on Doppler Signatures. Cardenas JD; Gutierrez CA; Aguilar-Ponce R Int J Environ Res Public Health; 2023 Jan; 20(2):. PubMed ID: 36673883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]