BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34073840)

  • 1. Radiomic Based Machine Learning Performance for a Three Class Problem in Neuro-Oncology: Time to Test the Waters?
    Priya S; Liu Y; Ward C; Le NH; Soni N; Pillenahalli Maheshwarappa R; Monga V; Zhang H; Sonka M; Bathla G
    Cancers (Basel); 2021 May; 13(11):. PubMed ID: 34073840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiomics-based differentiation between glioblastoma and primary central nervous system lymphoma: a comparison of diagnostic performance across different MRI sequences and machine learning techniques.
    Bathla G; Priya S; Liu Y; Ward C; Le NH; Soni N; Maheshwarappa RP; Monga V; Zhang H; Sonka M
    Eur Radiol; 2021 Nov; 31(11):8703-8713. PubMed ID: 33890149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning based differentiation of glioblastoma from brain metastasis using MRI derived radiomics.
    Priya S; Liu Y; Ward C; Le NH; Soni N; Pillenahalli Maheshwarappa R; Monga V; Zhang H; Sonka M; Bathla G
    Sci Rep; 2021 May; 11(1):10478. PubMed ID: 34006893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiparametric-MRI-Based Radiomics Model for Differentiating Primary Central Nervous System Lymphoma From Glioblastoma: Development and Cross-Vendor Validation.
    Xia W; Hu B; Li H; Geng C; Wu Q; Yang L; Yin B; Gao X; Li Y; Geng D
    J Magn Reson Imaging; 2021 Jan; 53(1):242-250. PubMed ID: 32864825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AI-based classification of three common malignant tumors in neuro-oncology: A multi-institutional comparison of machine learning and deep learning methods.
    Bathla G; Dhruba DD; Soni N; Liu Y; Larson NB; Kassmeyer BA; Mohan S; Roberts-Wolfe D; Rathore S; Le NH; Zhang H; Sonka M; Priya S
    J Neuroradiol; 2024 May; 51(3):258-264. PubMed ID: 37652263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrative non-invasive malignant brain tumors classification and Ki-67 labeling index prediction pipeline with radiomics approach.
    Zhang L; Liu X; Xu X; Liu W; Jia Y; Chen W; Fu X; Li Q; Sun X; Zhang Y; Shu S; Zhang X; Xiang R; Chen H; Sun P; Geng D; Yu Z; Liu J; Wang J
    Eur J Radiol; 2023 Jan; 158():110639. PubMed ID: 36463703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods.
    Wang X; Wan Q; Chen H; Li Y; Li X
    Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI.
    Kim Y; Cho HH; Kim ST; Park H; Nam D; Kong DS
    Neuroradiology; 2018 Dec; 60(12):1297-1305. PubMed ID: 30232517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multiparametric MRI-Based Radiomics Analysis to Efficiently Classify Tumor Subregions of Glioblastoma: A Pilot Study in Machine Learning.
    Chiu FY; Le NQK; Chen CY
    J Clin Med; 2021 May; 10(9):. PubMed ID: 34068528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach.
    Suh HB; Choi YS; Bae S; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK
    Eur Radiol; 2018 Sep; 28(9):3832-3839. PubMed ID: 29626238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glioblastoma and primary central nervous system lymphoma: differentiation using MRI derived first-order texture analysis - a machine learning study.
    Priya S; Ward C; Locke T; Soni N; Maheshwarappa RP; Monga V; Agarwal A; Bathla G
    Neuroradiol J; 2021 Aug; 34(4):320-328. PubMed ID: 33657924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiregional radiomics profiling from multiparametric MRI: Identifying an imaging predictor of IDH1 mutation status in glioblastoma.
    Li ZC; Bai H; Sun Q; Zhao Y; Lv Y; Zhou J; Liang C; Chen Y; Liang D; Zheng H
    Cancer Med; 2018 Dec; 7(12):5999-6009. PubMed ID: 30426720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation.
    Kang D; Park JE; Kim YH; Kim JH; Oh JY; Kim J; Kim Y; Kim ST; Kim HS
    Neuro Oncol; 2018 Aug; 20(9):1251-1261. PubMed ID: 29438500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of SUSAN Denoising and ComBat Harmonization on Machine Learning Model Performance for Malignant Brain Neoplasms.
    Bathla G; Soni N; Mark IT; Liu Y; Larson NB; Kassmeyer BA; Mohan S; Benson JC; Rathore S; Agarwal A
    AJNR Am J Neuroradiol; 2024 Apr; ():. PubMed ID: 38604733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiomics-Based Machine Learning in Differentiation Between Glioblastoma and Metastatic Brain Tumors.
    Chen C; Ou X; Wang J; Guo W; Ma X
    Front Oncol; 2019; 9():806. PubMed ID: 31508366
    [No Abstract]   [Full Text] [Related]  

  • 16. Machine learning-based radiomic, clinical and semantic feature analysis for predicting overall survival and MGMT promoter methylation status in patients with glioblastoma.
    Lu Y; Patel M; Natarajan K; Ughratdar I; Sanghera P; Jena R; Watts C; Sawlani V
    Magn Reson Imaging; 2020 Dec; 74():161-170. PubMed ID: 32980505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion and perfusion MRI radiomics obtained from deep learning segmentation provides reproducible and comparable diagnostic model to human in post-treatment glioblastoma.
    Park JE; Ham S; Kim HS; Park SY; Yun J; Lee H; Choi SH; Kim N
    Eur Radiol; 2021 May; 31(5):3127-3137. PubMed ID: 33128598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma.
    Nakagawa M; Nakaura T; Namimoto T; Kitajima M; Uetani H; Tateishi M; Oda S; Utsunomiya D; Makino K; Nakamura H; Mukasa A; Hirai T; Yamashita Y
    Eur J Radiol; 2018 Nov; 108():147-154. PubMed ID: 30396648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiparametric imaging-based differentiation of lymphoma and glioblastoma: using T1-perfusion, diffusion, and susceptibility-weighted MRI.
    Saini J; Kumar Gupta P; Awasthi A; Pandey CM; Singh A; Patir R; Ahlawat S; Sadashiva N; Mahadevan A; Kumar Gupta R
    Clin Radiol; 2018 Nov; 73(11):986.e7-986.e15. PubMed ID: 30197047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Triple-Classification Radiomics Model for the Differentiation of Primary Chordoma, Giant Cell Tumor, and Metastatic Tumor of Sacrum Based on T2-Weighted and Contrast-Enhanced T1-Weighted MRI.
    Yin P; Mao N; Zhao C; Wu J; Chen L; Hong N
    J Magn Reson Imaging; 2019 Mar; 49(3):752-759. PubMed ID: 30430686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.