BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34073862)

  • 1. Small RNA, Transcriptome and Degradome Analysis of the Transgenerational Heat Stress Response Network in Durum Wheat.
    Liu H; Able AJ; Able JA
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the Water-Deficit and Heat Stress Response Network in Durum Wheat.
    Liu H; Able AJ; Able JA
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Omics Analysis of Small RNA, Transcriptome, and Degradome in
    Liu H; Able AJ; Able JA
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33096606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small RNAs and their targets are associated with the transgenerational effects of water-deficit stress in durum wheat.
    Liu H; Able AJ; Able JA
    Sci Rep; 2021 Feb; 11(1):3613. PubMed ID: 33574419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genotypic performance of Australian durum under single and combined water-deficit and heat stress during reproduction.
    Liu H; Able AJ; Able JA
    Sci Rep; 2019 Oct; 9(1):14986. PubMed ID: 31628402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen Starvation-Responsive MicroRNAs Are Affected by Transgenerational Stress in Durum Wheat Seedlings.
    Liu H; Able AJ; Able JA
    Plants (Basel); 2021 Apr; 10(5):. PubMed ID: 33919185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early Response of Radish to Heat Stress by Strand-Specific Transcriptome and miRNA Analysis.
    Yang Z; Li W; Su X; Ge P; Zhou Y; Hao Y; Shu H; Gao C; Cheng S; Zhu G; Wang Z
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31284545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep sequencing of wheat sRNA transcriptome reveals distinct temporal expression pattern of miRNAs in response to heat, light and UV.
    Ragupathy R; Ravichandran S; Mahdi MS; Huang D; Reimer E; Domaratzki M; Cloutier S
    Sci Rep; 2016 Dec; 6():39373. PubMed ID: 28004741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid sequencing reveals insight into heat sensing and signaling of bread wheat.
    Wang X; Chen S; Shi X; Liu D; Zhao P; Lu Y; Cheng Y; Liu Z; Nie X; Song W; Sun Q; Xu S; Ma C
    Plant J; 2019 Jun; 98(6):1015-1032. PubMed ID: 30891832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Pre-Anthesis Drought, Heat and Their Combination on the Growth, Yield and Physiology of diverse Wheat (Triticum aestivum L.) Genotypes Varying in Sensitivity to Heat and drought stress.
    Qaseem MF; Qureshi R; Shaheen H
    Sci Rep; 2019 May; 9(1):6955. PubMed ID: 31061444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-Wide Identification of MicroRNAs in Leaves and the Developing Head of Four Durum Genotypes during Water Deficit Stress.
    Liu H; Searle IR; Watson-Haigh NS; Baumann U; Mather DE; Able AJ; Able JA
    PLoS One; 2015; 10(11):e0142799. PubMed ID: 26562166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome analysis of heat stress response genes in potato leaves.
    Tang R; Gupta SK; Niu S; Li XQ; Yang Q; Chen G; Zhu W; Haroon M
    Mol Biol Rep; 2020 Jun; 47(6):4311-4321. PubMed ID: 32488578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive transcriptome analysis reveals genes in response to water deficit in the leaves of Saccharum narenga (Nees ex Steud.) hack.
    Liu X; Zhang R; Ou H; Gui Y; Wei J; Zhou H; Tan H; Li Y
    BMC Plant Biol; 2018 Oct; 18(1):250. PubMed ID: 30342477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding the wheat awn transcriptome and overexpressing TaRca1β in rice for heat stress tolerance.
    Chaudhary C; Sharma N; Khurana P
    Plant Mol Biol; 2021 Jan; 105(1-2):133-146. PubMed ID: 33034884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The miRNAome of durum wheat: isolation and characterisation of conserved and novel microRNAs and their target genes.
    De Paola D; Zuluaga DL; Sonnante G
    BMC Genomics; 2016 Jul; 17():505. PubMed ID: 27448633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcripts of wheat at a target locus on chromosome 6B associated with increased yield, leaf mass and chlorophyll index under combined drought and heat stress.
    Schmidt J; Garcia M; Brien C; Kalambettu P; Garnett T; Fleury D; Tricker PJ
    PLoS One; 2020; 15(11):e0241966. PubMed ID: 33166353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing Next Generation Sequencing in Climate Change: RNA-Seq Analysis of Heat Stress-Responsive Genes in Wheat (Triticum aestivum L.).
    Kumar RR; Goswami S; Sharma SK; Kala YK; Rai GK; Mishra DC; Grover M; Singh GP; Pathak H; Rai A; Chinnusamy V; Rai RD
    OMICS; 2015 Oct; 19(10):632-47. PubMed ID: 26406536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway.
    Hu XJ; Chen D; Lynne Mclntyre C; Fernanda Dreccer M; Zhang ZB; Drenth J; Kalaipandian S; Chang H; Xue GP
    Plant Cell Environ; 2018 Jan; 41(1):79-98. PubMed ID: 28370204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome profiling of wheat glumes in wild emmer, hulled landraces and modern cultivars.
    Zou H; Tzarfati R; Hübner S; Krugman T; Fahima T; Abbo S; Saranga Y; Korol AB
    BMC Genomics; 2015 Oct; 16():777. PubMed ID: 26462652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global analysis of switchgrass (Panicum virgatum L.) transcriptomes in response to interactive effects of drought and heat stresses.
    Hayford RK; Serba DD; Xie S; Ayyappan V; Thimmapuram J; Saha MC; Wu CH; Kalavacharla VK
    BMC Plant Biol; 2022 Mar; 22(1):107. PubMed ID: 35260072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.