These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34073896)

  • 1. Interoperable Nanoparticle Sensor Capable of Strain and Vibration Measurement for Rotor Blade Monitoring.
    Min SH; Quan YJ; Park SY; Lee GY; Ahn SH
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directly Printed Low-Cost Nanoparticle Sensor for Vibration Measurement during Milling Process.
    Min SH; Lee TH; Lee GY; Zontar D; Brecher C; Ahn SH
    Materials (Basel); 2020 Jun; 13(13):. PubMed ID: 32610552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Printed, Soft, Nanostructured Strain Sensors for Monitoring of Structural Health and Human Physiology.
    Herbert R; Lim HR; Yeo WH
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25020-25030. PubMed ID: 32393022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Sensitive Solvent-free Silver Nanoparticle Strain Sensors with Tunable Sensitivity Created Using an Aerodynamically Focused Nanoparticle Printer.
    Lee GY; Kim MS; Min SH; Kim HS; Kim HJ; Keller R; Ihn JB; Ahn SH
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26421-26432. PubMed ID: 31148453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerodynamically focused nanoparticle (AFN) printing: novel direct printing technique of solvent-free and inorganic nanoparticles.
    Lee GY; Park JI; Kim CS; Yoon HS; Yang J; Ahn SH
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16466-71. PubMed ID: 25238591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Low-Cost Strain Gauge Displacement Sensor Fabricated via Shadow Mask Printing.
    Yi Y; Wang B; Bermak A
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31671560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible strain sensor with high sensitivity, fast response, and good sensing range for wearable applications.
    Nuthalapati S; Kedambaimoole V; Shirhatti V; Kumar S; Takao H; Nayak MM; Rajanna K
    Nanotechnology; 2021 Sep; 32(50):. PubMed ID: 34517349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural effects of 3D printing resolution on the gauge factor of microcrack-based strain gauges for health care monitoring.
    Shin S; Ko B; So H
    Microsyst Nanoeng; 2022; 8():12. PubMed ID: 35136651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Channel-Crack-Designed Suspended Sensing Membrane as a Fully Flexible Vibration Sensor with High Sensitivity and Dynamic Range.
    Chen X; Zeng Q; Shao J; Li S; Li X; Tian H; Liu G; Nie B; Luo Y
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34637-34647. PubMed ID: 34269049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Stretchable and Wearable Strain Sensor Based on Printable Carbon Nanotube Layers/Polydimethylsiloxane Composites with Adjustable Sensitivity.
    Wang X; Li J; Song H; Huang H; Gou J
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7371-7380. PubMed ID: 29432684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin.
    Liu C; Huang N; Xu F; Tong J; Chen Z; Gui X; Fu Y; Lao C
    Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Development of a Fully Printed Accelerometer with a Carbon Paste-Based Strain Gauge.
    Liu M; Zhang Q; Zhao Y; Shao Y; Zhang D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32560177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct 3D Printing of Highly Anisotropic, Flexible, Constriction-Resistive Sensors for Multidirectional Proprioception in Soft Robots.
    Mousavi S; Howard D; Zhang F; Leng J; Wang CH
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15631-15643. PubMed ID: 32129594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible Strain Sensors Fabricated by Meniscus-Guided Printing of Carbon Nanotube-Polymer Composites.
    Wajahat M; Lee S; Kim JH; Chang WS; Pyo J; Cho SH; Seol SK
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19999-20005. PubMed ID: 29808984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high gauge-factor wearable strain sensor array via 3D printed mold fabrication and size optimization of silver-coated carbon nanotubes.
    Pei Z; Zhang Q; Liu Y; Zhao Y; Dong X; Zhang Y; Zhang W; Sang S
    Nanotechnology; 2020 Jul; 31(30):305501. PubMed ID: 32235078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and Performance Evaluation of Highly Sensitive Flexible Strain Sensors with Aligned Silver Nanowires.
    Choi JH; Shin MG; Jung Y; Kim DH; Ko JS
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 32019263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Cilia Sensors with Graphene Sensing Elements Fabricated Using 3D Printing and Casting.
    Kamat AM; Pei Y; Kottapalli AGP
    Nanomaterials (Basel); 2019 Jun; 9(7):. PubMed ID: 31262009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crack-Based Sensor by Using the UV Curable Polyurethane-Acrylate Coated Film with V-Groove Arrays.
    Park J; Kim DS; Yoon Y; Shanmugasundaram A; Lee DW
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transparent and Flexible Vibration Sensor Based on a Wheel-Shaped Hybrid Thin Membrane.
    Lee S; Lee EK; Lee E; Bae GY
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Piezoresistive Sensors Embedded in 3D Printed Tires.
    Emon MO; Choi JW
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28327533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.