BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34074133)

  • 1. Self-Assembling Antioxidants for Ischemia-Reperfusion Injuries.
    Yoshitomi T; Nagasaki Y
    Antioxid Redox Signal; 2022 Jan; 36(1-3):70-80. PubMed ID: 34074133
    [No Abstract]   [Full Text] [Related]  

  • 2. Reactive oxygen species-scavenging nanomedicines for the treatment of oxidative stress injuries.
    Yoshitomi T; Nagasaki Y
    Adv Healthc Mater; 2014 Aug; 3(8):1149-61. PubMed ID: 24482427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Design of New Cancer Nanotherapeutics Which Controls Active Gaseous Molecules in Vivo].
    Nagasaki Y
    Yakugaku Zasshi; 2018; 138(7):911-918. PubMed ID: 29962468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurovascular Unit Protection From Cerebral Ischemia-Reperfusion Injury by Radical-Containing Nanoparticles in Mice.
    Hosoo H; Marushima A; Nagasaki Y; Hirayama A; Ito H; Puentes S; Mujagic A; Tsurushima H; Tsuruta W; Suzuki K; Matsui H; Matsumaru Y; Yamamoto T; Matsumura A
    Stroke; 2017 Aug; 48(8):2238-2247. PubMed ID: 28655813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Encapsulation of tissue plasminogen activator in pH-sensitive self-assembled antioxidant nanoparticles for ischemic stroke treatment - Synergistic effect of thrombolysis and antioxidant.
    Mei T; Kim A; Vong LB; Marushima A; Puentes S; Matsumaru Y; Matsumura A; Nagasaki Y
    Biomaterials; 2019 Sep; 215():119209. PubMed ID: 31181394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitroxyl radical-containing nanoparticles for novel nanomedicine against oxidative stress injury.
    Yoshitomi T; Nagasaki Y
    Nanomedicine (Lond); 2011 Apr; 6(3):509-18. PubMed ID: 21542688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antioxidant nanomedicine with cytoplasmic distribution in neuronal cells shows superior neurovascular protection properties.
    Mujagić A; Marushima A; Nagasaki Y; Hosoo H; Hirayama A; Puentes S; Takahashi T; Tsurushima H; Suzuki K; Matsui H; Ishikawa E; Matsumaru Y; Matsumura A
    Brain Res; 2020 Sep; 1743():146922. PubMed ID: 32504549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a new self-assembling antioxidant nanomedicine to ameliorate oxidative stress in zebrafish embryos.
    Shashni B; Tamaoki J; Kobayashi M; Nagasaki Y
    Acta Biomater; 2023 Mar; 159():367-381. PubMed ID: 36640953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Newly synthesized radical-containing nanoparticles enhance neuroprotection after cerebral ischemia-reperfusion injury.
    Marushima A; Suzuki K; Nagasaki Y; Yoshitomi T; Toh K; Tsurushima H; Hirayama A; Matsumura A
    Neurosurgery; 2011 May; 68(5):1418-25; discussion 1425-6. PubMed ID: 21273921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitroxide radicals and nanoparticles: a partnership for nanomedicine radical delivery.
    Nagasaki Y
    Ther Deliv; 2012 Feb; 3(2):165-79. PubMed ID: 22834195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Management of tumor growth and angiogenesis in triple-negative breast cancer by using redox nanoparticles.
    Shashni B; Nishikawa Y; Nagasaki Y
    Biomaterials; 2021 Feb; 269():120645. PubMed ID: 33453633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination Treatment of Murine Colon Cancer with Doxorubicin and Redox Nanoparticles.
    Vong LB; Nagasaki Y
    Mol Pharm; 2016 Feb; 13(2):449-55. PubMed ID: 26605906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomedicine-Based Therapeutics for Myocardial Ischemic/Reperfusion Injury.
    Li X; Ou W; Xie M; Yang J; Li Q; Li T
    Adv Healthc Mater; 2023 Aug; 12(20):e2300161. PubMed ID: 36971662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Characterization of Reactive Oxygen Species in Myocardial Ischemia-Reperfusion Injury.
    Zhou T; Chuang CC; Zuo L
    Biomed Res Int; 2015; 2015():864946. PubMed ID: 26509170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The protective effect of orally administered redox nanoparticle on intestinal ischemia-reperfusion injury in mice.
    Ueda T; Takagi T; Katada K; Iida T; Mizushima K; Dohi O; Okayama T; Yoshida N; Kamada K; Uchiyama K; Handa O; Ishikawa T; Konishi H; Naito Y; Nagasaki Y; Itoh Y
    Biochem Biophys Res Commun; 2018 Jan; 495(2):2044-2049. PubMed ID: 29198710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitroxide radical-containing nanoparticles attenuate tumorigenic potential of triple negative breast cancer.
    Shashni B; Nagasaki Y
    Biomaterials; 2018 Sep; 178():48-62. PubMed ID: 29908344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ischemia Reperfusion Injury: Opportunities for Nanoparticles.
    Zang X; Zhou J; Zhang X; Han Y; Chen X
    ACS Biomater Sci Eng; 2020 Dec; 6(12):6528-6539. PubMed ID: 33320610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay between ROS and Antioxidants during Ischemia-Reperfusion Injuries in Cardiac and Skeletal Muscle.
    Zhou T; Prather ER; Garrison DE; Zuo L
    Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29385043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of the protective effects of quercetin-rich natural compounds for treating ischemia-reperfusion injury.
    Javadinia SS; Abbaszadeh-Goudarzi K; Mahdian D; Hosseini A; Ghalenovi M; Javan R
    Biotech Histochem; 2022 May; 97(4):237-246. PubMed ID: 34157912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanomedicine in the ROS-mediated pathophysiology: Applications and clinical advances.
    Nash KM; Ahmed S
    Nanomedicine; 2015 Nov; 11(8):2033-40. PubMed ID: 26255114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.