These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34074783)

  • 1. Petrographic carbon in ancient sediments constrains Proterozoic Era atmospheric oxygen levels.
    Canfield DE; van Zuilen MA; Nabhan S; Bjerrum CJ; Zhang S; Wang H; Wang X
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34074783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new model for atmospheric oxygen over Phanerozoic time.
    Berner RA; Canfield DE
    Am J Sci; 1989 Apr; 289(4):333-61. PubMed ID: 11539776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.
    Hamilton TL; Bryant DA; Macalady JL
    Environ Microbiol; 2016 Feb; 18(2):325-40. PubMed ID: 26549614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotopic evidence for massive oxidation of organic matter following the great oxidation event.
    Kump LR; Junium C; Arthur MA; Brasier A; Fallick A; Melezhik V; Lepland A; Crne AE; Luo G
    Science; 2011 Dec; 334(6063):1694-6. PubMed ID: 22144465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypothesized link between Neoproterozoic greening of the land surface and the establishment of an oxygen-rich atmosphere.
    Kump LR
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14062-5. PubMed ID: 25225378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen dynamics in the aftermath of the Great Oxidation of Earth's atmosphere.
    Canfield DE; Ngombi-Pemba L; Hammarlund EU; Bengtson S; Chaussidon M; Gauthier-Lafaye F; Meunier A; Riboulleau A; Rollion-Bard C; Rouxel O; Asael D; Pierson-Wickmann AC; El Albani A
    Proc Natl Acad Sci U S A; 2013 Oct; 110(42):16736-41. PubMed ID: 24082125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes.
    Frei R; Gaucher C; Poulton SW; Canfield DE
    Nature; 2009 Sep; 461(7261):250-3. PubMed ID: 19741707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering.
    Mills B; Lenton TM; Watson AJ
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9073-8. PubMed ID: 24927553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioturbation and directionality in Earth's carbon isotope record across the Neoproterozoic-Cambrian transition.
    Boyle RA; Dahl TW; Bjerrum CJ; Canfield DE
    Geobiology; 2018 May; 16(3):252-278. PubMed ID: 29498810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large Mass-Independent Oxygen Isotope Fractionations in Mid-Proterozoic Sediments: Evidence for a Low-Oxygen Atmosphere?
    Planavsky NJ; Reinhard CT; Isson TT; Ozaki K; Crockford PW
    Astrobiology; 2020 May; 20(5):628-636. PubMed ID: 32228301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen.
    Belcher CM; Mills BJW; Vitali R; Baker SJ; Lenton TM; Watson AJ
    Nat Commun; 2021 Jan; 12(1):503. PubMed ID: 33479227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic respiration in the Archaean?
    Towe KM
    Nature; 1990 Nov; 348(6296):54-6. PubMed ID: 11536471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation.
    Sperling EA; Wolock CJ; Morgan AS; Gill BC; Kunzmann M; Halverson GP; Macdonald FA; Knoll AH; Johnston DT
    Nature; 2015 Jul; 523(7561):451-4. PubMed ID: 26201598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry.
    Farquhar J; Peters M; Johnston DT; Strauss H; Masterson A; Wiechert U; Kaufman AJ
    Nature; 2007 Oct; 449(7163):706-9. PubMed ID: 17928857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Box models for the evolution of atmospheric oxygen: an update.
    Kasting JF
    Glob Planet Change; 1991; 97():125-31. PubMed ID: 11538092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Earliest land plants created modern levels of atmospheric oxygen.
    Lenton TM; Dahl TW; Daines SJ; Mills BJ; Ozaki K; Saltzman MR; Porada P
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9704-9. PubMed ID: 27528678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of the global phosphorus cycle.
    Reinhard CT; Planavsky NJ; Gill BC; Ozaki K; Robbins LJ; Lyons TW; Fischer WW; Wang C; Cole DB; Konhauser KO
    Nature; 2017 Jan; 541(7637):386-389. PubMed ID: 28002400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland.
    Knoll AH; Hayes JM; Kaufman AJ; Swett K; Lambert IB
    Nature; 1986 Jun; 321(6073):832-8. PubMed ID: 11540872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards a quantitative understanding of the late Neoproterozoic carbon cycle.
    Bjerrum CJ; Canfield DE
    Proc Natl Acad Sci U S A; 2011 Apr; 108(14):5542-7. PubMed ID: 21422280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term sedimentary recycling of rare sulphur isotope anomalies.
    Reinhard CT; Planavsky NJ; Lyons TW
    Nature; 2013 May; 497(7447):100-3. PubMed ID: 23615613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.