These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34075036)

  • 1. Quantum surface-response of metals revealed by acoustic graphene plasmons.
    Gonçalves PAD; Christensen T; Peres NMR; Jauho AP; Epstein I; Koppens FHL; Soljačić M; Mortensen NA
    Nat Commun; 2021 Jun; 12(1):3271. PubMed ID: 34075036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy.
    Lee IH; Yoo D; Avouris P; Low T; Oh SH
    Nat Nanotechnol; 2019 Apr; 14(4):313-319. PubMed ID: 30742134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-space imaging of acoustic plasmons in large-area graphene grown by chemical vapor deposition.
    Menabde SG; Lee IH; Lee S; Ha H; Heiden JT; Yoo D; Kim TT; Low T; Lee YH; Oh SH; Jang MS
    Nat Commun; 2021 Feb; 12(1):938. PubMed ID: 33608541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interrogating Quantum Nonlocal Effects in Nanoplasmonics through Electron-Beam Spectroscopy.
    Gonçalves PAD; García de Abajo FJ
    Nano Lett; 2023 May; 23(10):4242-4249. PubMed ID: 37172322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong in-plane scattering of acoustic graphene plasmons by surface atomic steps.
    Zhang N; Luo W; Wang L; Fan J; Wu W; Ren M; Zhang X; Cai W; Xu J
    Nat Commun; 2022 Feb; 13(1):983. PubMed ID: 35190535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum interference in plasmonic circuits.
    Heeres RW; Kouwenhoven LP; Zwiller V
    Nat Nanotechnol; 2013 Oct; 8(10):719-22. PubMed ID: 23934097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring of electromagnetic field localizations by two-dimensional graphene nanostructures.
    Zheng ZB; Li JT; Ma T; Fang HL; Ren WC; Chen J; She JC; Zhang Y; Liu F; Chen HJ; Deng SZ; Xu NS
    Light Sci Appl; 2017 Oct; 6(10):e17057. PubMed ID: 30167201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure.
    Alcaraz Iranzo D; Nanot S; Dias EJC; Epstein I; Peng C; Efetov DK; Lundeberg MB; Parret R; Osmond J; Hong JY; Kong J; Englund DR; Peres NMR; Koppens FHL
    Science; 2018 Apr; 360(6386):291-295. PubMed ID: 29674587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of acoustic plasmons in vertically stacked metal/dielectric/graphene heterostructures for multiband coherent perfect absorption.
    Li H; Zhang Y; Xiao H; Qin M; Xia S; Wang L
    Opt Express; 2020 Dec; 28(25):37577-37589. PubMed ID: 33379590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultraconfined Plasmons in Atomically Thin Crystalline Silver Nanostructures.
    Mkhitaryan V; Weber AP; Abdullah S; Fernández L; Abd El-Fattah ZM; Piquero-Zulaica I; Agarwal H; García Díez K; Schiller F; Ortega JE; García de Abajo FJ
    Adv Mater; 2024 Mar; 36(9):e2302520. PubMed ID: 37924223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear Graphene Nanoplasmonics.
    Cox JD; García de Abajo FJ
    Acc Chem Res; 2019 Sep; 52(9):2536-2547. PubMed ID: 31448890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy.
    Alonso-González P; Nikitin AY; Gao Y; Woessner A; Lundeberg MB; Principi A; Forcellini N; Yan W; Vélez S; Huber AJ; Watanabe K; Taniguchi T; Casanova F; Hueso LE; Polini M; Hone J; Koppens FH; Hillenbrand R
    Nat Nanotechnol; 2017 Jan; 12(1):31-35. PubMed ID: 27775727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Plasmon Thermo-Optical Switching in Graphene.
    Cox JD; García de Abajo FJ
    Nano Lett; 2019 Jun; 19(6):3743-3750. PubMed ID: 31117754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gate-tuning of graphene plasmons revealed by infrared nano-imaging.
    Fei Z; Rodin AS; Andreev GO; Bao W; McLeod AS; Wagner M; Zhang LM; Zhao Z; Thiemens M; Dominguez G; Fogler MM; Castro Neto AH; Lau CN; Keilmann F; Basov DN
    Nature; 2012 Jul; 487(7405):82-5. PubMed ID: 22722866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing ultraconfined graphene plasmons to probe the electrodynamics of superconductors.
    Costa AT; Gonçalves PAD; Basov DN; Koppens FHL; Mortensen NA; Peres NMR
    Proc Natl Acad Sci U S A; 2021 Jan; 118(4):. PubMed ID: 33479179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum finite-size effects in graphene plasmons.
    Thongrattanasiri S; Manjavacas A; García de Abajo FJ
    ACS Nano; 2012 Feb; 6(2):1766-75. PubMed ID: 22217250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observing optical plasmons on a single nanometer scale.
    Cohen M; Shavit R; Zalevsky Z
    Sci Rep; 2014 Feb; 4():4096. PubMed ID: 24556874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Molecular Infrared Spectroscopy Employing Bilayer Graphene Acoustic Plasmon Resonator.
    Wen C; Luo J; Xu W; Zhu Z; Qin S; Zhang J
    Biosensors (Basel); 2021 Oct; 11(11):. PubMed ID: 34821647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-energy acoustic plasmons at metal surfaces.
    Diaconescu B; Pohl K; Vattuone L; Savio L; Hofmann P; Silkin VM; Pitarke JM; Chulkov EV; Echenique PM; Farías D; Rocca M
    Nature; 2007 Jul; 448(7149):57-9. PubMed ID: 17611537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical field enhancement by strong plasmon interaction in graphene nanostructures.
    Thongrattanasiri S; García de Abajo FJ
    Phys Rev Lett; 2013 May; 110(18):187401. PubMed ID: 23683241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.