These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3407530)

  • 1. Muscle stiffness changes during enhancement and deficit of isometric force in response to slow length changes.
    Tsuchiya T; Sugi H
    Adv Exp Med Biol; 1988; 226():503-11. PubMed ID: 3407530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stiffness changes during enhancement and deficit of isometric force by slow length changes in frog skeletal muscle fibres.
    Sugi H; Tsuchiya T
    J Physiol; 1988 Dec; 407():215-29. PubMed ID: 3256616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved X-ray diffraction studies on the effect of slow length changes on tetanized frog skeletal muscle.
    Amemiya Y; Iwamoto H; Kobayashi T; Sugi H; Tanaka H; Wakabayashi K
    J Physiol; 1988 Dec; 407():231-41. PubMed ID: 3267188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between force and stiffness in muscle fibers after stretch.
    Rassier DE; Herzog W
    J Appl Physiol (1985); 2005 Nov; 99(5):1769-75. PubMed ID: 16002777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle stiffness changes during isometric contraction in frog skeletal muscle as studied by the use of ultrasonic waves.
    Hatta I; Tamura Y; Matsuda T; Sugi H; Tsuchiya T
    Adv Exp Med Biol; 1984; 170():673-86. PubMed ID: 6611039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanisms of force enhancement during constant velocity lengthening in tetanized single fibres of frog muscle.
    Colomo F; Lombardi V; Piazzesi G
    Adv Exp Med Biol; 1988; 226():489-502. PubMed ID: 3261491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in force and stiffness during stretch of skeletal muscle fibers, effects of hypertonicity.
    MÃ¥nsson A
    Biophys J; 1989 Aug; 56(2):429-33. PubMed ID: 2789080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stiffness and force in activated frog skeletal muscle fibers.
    Cecchi G; Griffiths PJ; Taylor S
    Biophys J; 1986 Feb; 49(2):437-51. PubMed ID: 3955178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sarcomere length and force changes in single tetanized from muscle fibers following quick changes in fiber length.
    Sugi H; Kobayashi T
    Adv Exp Med Biol; 1984; 170():623-35. PubMed ID: 6741710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residual force enhancement after stretch of contracting frog single muscle fibers.
    Edman KA; Elzinga G; Noble MI
    J Gen Physiol; 1982 Nov; 80(5):769-84. PubMed ID: 6983564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force response to rapid length change during contraction and rigor in skinned smooth muscle of guinea-pig taenia coli.
    Arheden H; Hellstrand P
    J Physiol; 1991 Oct; 442():601-30. PubMed ID: 1798045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron microscopic studies on the stretch-induced disordering of the myofilament lattice in tetanized frog skeletal muscle fibers.
    Suzuki S; Tsuchiya T; Oshimi Y; Takei T; Sugi H
    J Electron Microsc (Tokyo); 1989; 38(1):60-3. PubMed ID: 2723573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmental length changes in stimulated frog sartorius muscle during dynamic mechanical responses.
    Kobayashi T; Sugi H
    Jpn J Physiol; 1982; 32(5):817-30. PubMed ID: 7154433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of hypertonicity on force generation in tetanized single fibres from frog skeletal muscle.
    Piazzesi G; Linari M; Lombardi V
    J Physiol; 1994 May; 476(3):531-46. PubMed ID: 8057258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sarcomere length dependence of muscle stiffness changes during contraction recorded using ultrasonic waves.
    Tamura Y; Hatta I; Sugi H
    Adv Exp Med Biol; 1988; 226():541-51. PubMed ID: 3261493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stiffness changes in frog skeletal muscle during contraction recorded using ultrasonic waves.
    Hatta I; Sugi H; Tamura Y
    J Physiol; 1988 Sep; 403():193-209. PubMed ID: 3075667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stretch-induced enhancement of mechanical work production in frog single fibers and human muscle.
    Takarada Y; Iwamoto H; Sugi H; Hirano Y; Ishii N
    J Appl Physiol (1985); 1997 Nov; 83(5):1741-8. PubMed ID: 9375346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Movements of cross-bridges during and after slow length changes in active frog skeletal muscle.
    Matsubara I; Yagi N
    J Physiol; 1985 Apr; 361():151-63. PubMed ID: 3872939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active force inhibition and stretch-induced force enhancement in frog muscle treated with BDM.
    Rassier DE; Herzog W
    J Appl Physiol (1985); 2004 Oct; 97(4):1395-400. PubMed ID: 15194676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model of force production that explains the lag between crossbridge attachment and force after electrical stimulation of striated muscle fibers.
    Bagni MA; Cecchi G; Schoenberg M
    Biophys J; 1988 Dec; 54(6):1105-14. PubMed ID: 3233267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.