These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 3407537)

  • 1. The energetics of work and heat production by single muscle fibres from the frog.
    Woledge RC; Wilson MG; Howarth JV; Elzinga G; Kometani K
    Adv Exp Med Biol; 1988; 226():677-88. PubMed ID: 3407537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The variation in shortening heat with sarcomere length in frog muscle.
    Homsher E; Irving M; Lebacq J
    J Physiol; 1983 Dec; 345():107-21. PubMed ID: 6607340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of shortening velocity on the shortening heat and its relationship to the distance shortened.
    Homsher E; Yamada T
    Adv Exp Med Biol; 1988; 226():689-700. PubMed ID: 3407538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dependence on extent of shortening of the extra energy liberated by rapidly shortening frog skeletal muscle.
    Irving M; Woledge RC
    J Physiol; 1981 Dec; 321():411-22. PubMed ID: 6978397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependence of the shortening heat on sarcomere length in fibre bundles from frog semitendinosus muscles.
    Yamada K; Kometani K
    Adv Exp Med Biol; 1984; 170():853-64. PubMed ID: 6741721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The kinetics of heat production in response to active shortening in frog skeletal muscle.
    Ford LE; Gilbert SH
    J Physiol; 1987 Apr; 385():449-70. PubMed ID: 3498824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force-velocity relation and stiffness in frog single muscle fibres during the rise of tension in an isometric tetanus.
    Lorenzini CA; Colomo F; Lombardi V
    Adv Exp Med Biol; 1984; 170():757-64. PubMed ID: 6611041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isotonic velocity transients in frog muscle fibres following quick changes in load.
    Sugi H; Tsuchiya T
    J Physiol; 1981; 319():219-38. PubMed ID: 7320912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable maintenance heat rate and contractile properties of different single muscle fibres from Xenopus laevis at 20 degrees C.
    Elzinga G; Lännergren J; Stienen GJ
    J Physiol; 1987 Dec; 393():399-412. PubMed ID: 3446801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A velocity-dependent shortening depression in the development of the force-velocity relation in frog muscle fibres.
    Colomo F; Lombardi V; Piazzesi G
    J Physiol; 1986 Nov; 380():227-38. PubMed ID: 3497263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in contractile dynamics during the course of a twitch of a frog muscle fibre.
    Haugen P
    J Muscle Res Cell Motil; 1987 Oct; 8(5):448-60. PubMed ID: 3501435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shortening velocity extrapolated to zero load and unloaded shortening velocity of whole rat skeletal muscle.
    Claflin DR; Faulkner JA
    J Physiol; 1985 Feb; 359():357-63. PubMed ID: 3999042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tension responses of frog skeletal muscle fibres to rapid shortening and lengthening steps.
    Bressler BH; Dusik LA; Menard MR
    J Physiol; 1988 Mar; 397():631-41. PubMed ID: 3261797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force-velocity relation of frog skeletal muscle fibres shortening under continuously changing load.
    Iwamoto H; Sugaya R; Sugi H
    J Physiol; 1990 Mar; 422():185-202. PubMed ID: 2352179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-energy phosphate metabolism and energy liberation associated with rapid shortening in frog skeletal muscle.
    Homsher E; Irving M; Wallner A
    J Physiol; 1981 Dec; 321():423-36. PubMed ID: 6978398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation of muscle stiffness with tension during tension transients and constant velocity shortening in the frog.
    Julian FJ; Morgan DL
    J Physiol; 1981; 319():193-203. PubMed ID: 6976429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanical characteristics of the contractile machinery at different levels of activation in intact single muscle fibres of the frog.
    Bagni MA; Cecchi G; Colomo F; Tesi C
    Adv Exp Med Biol; 1988; 226():473-87. PubMed ID: 3407527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of shortening on energy liberation and high energy phosphate hydrolysis in frog skeletal muscle.
    Homsher E; Irving M; Yamada T
    Adv Exp Med Biol; 1984; 170():865-81. PubMed ID: 6741722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The maximum velocity of shortening during the early phases of the contraction in frog single muscle fibres.
    Lombardi V; Menchetti G
    J Muscle Res Cell Motil; 1984 Oct; 5(5):503-13. PubMed ID: 6334695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contraction with shortening during stimulation or during relaxation: how do the energetic costs compare?
    Lou F; Curtin NA; Woledge RC
    J Muscle Res Cell Motil; 1998 Oct; 19(7):797-802. PubMed ID: 9836150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.