These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 3407537)

  • 21. Energetics of shortening muscles in twitches and tetanic contractions. I. A reinvestigation of Hill's concept of the shortening heat.
    Homsher E; Rall JA
    J Gen Physiol; 1973 Dec; 62(6):663-76. PubMed ID: 4548713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The dependence of isometric tension, isometric ATPase activity, and shortening velocity of limulus muscle on the MgATP concentration.
    Pferrer S; Kulik R; Hiller T; Kuhn HJ
    Biophys J; 1988 Feb; 53(2):127-35. PubMed ID: 2964257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of mechanical performance in frog muscle fibres after quick increases in load.
    Sugi H; Tsuchiya T
    J Physiol; 1981; 319():239-52. PubMed ID: 7320914
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energetic aspects of skeletal muscle contraction: implications of fiber types.
    Rall JA
    Exerc Sport Sci Rev; 1985; 13():33-74. PubMed ID: 3159582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tension and heat production during isometric contractions and shortening in the anterior byssus retractor muscle of Mytilus edulis.
    Gilbert SH
    J Physiol; 1978 Sep; 282():7-20. PubMed ID: 722564
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The stiffness under isotonic releases during a twitch of a frog muscle fibre.
    Haugen P
    Adv Exp Med Biol; 1988; 226():461-71. PubMed ID: 3261490
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ATPase activity of intact single muscle fibres of Xenopus laevis is related to the rate of force redevelopment after rapid shortening.
    Stienen GJ; Lännergren J; Elzinga G
    Basic Res Cardiol; 1987; 82 Suppl 2():111-7. PubMed ID: 2959253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Muscle energetics and the Fenn effect.
    Brandt PW; Orentlicher M
    Biophys J; 1972 May; 12(5):512-27. PubMed ID: 5063972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Force-velocity relation for frog muscle fibres: effects of moderate fatigue and of intracellular acidification.
    Curtin NA; Edman KA
    J Physiol; 1994 Mar; 475(3):483-94. PubMed ID: 8006830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A model of force production that explains the lag between crossbridge attachment and force after electrical stimulation of striated muscle fibers.
    Bagni MA; Cecchi G; Schoenberg M
    Biophys J; 1988 Dec; 54(6):1105-14. PubMed ID: 3233267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dependence of energy output on force generation during muscle contraction.
    Rall JA
    Am J Physiol; 1978 Jul; 235(1):C20-4. PubMed ID: 307913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heat changes during transient tension responses to small releases in active frog muscle.
    Gilbert SH; Ford LE
    Biophys J; 1988 Oct; 54(4):611-7. PubMed ID: 3265639
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The dependence on the distance of shortening of the energy output from frog skeletal muscle shortening at velocities of Vmax, 1/2Vmax and 1/4Vmax.
    Yamada T; Homsher E
    Adv Exp Med Biol; 1984; 170():883-5. PubMed ID: 6611043
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances in understanding the energetics of muscle contraction.
    Barclay CJ; Curtin NA
    J Biomech; 2023 Jul; 156():111669. PubMed ID: 37302165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The endothermic ATP hydrolysis and crossbridge attachment steps drive the increase of force with temperature in isometric and shortening muscle.
    Offer G; Ranatunga KW
    J Physiol; 2015 Apr; 593(8):1997-2016. PubMed ID: 25564737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical and energy characteristics during shortening in isolated type-1 muscle fibres from Xenopus laevis studied at maximal and submaximal activation.
    Buschman HP; Linari M; Elzinga G; Woledge RC
    Pflugers Arch; 1997 Dec; 435(1):145-50. PubMed ID: 9359914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron microscopical study of skeletal muscle during isotonic (afterload) and isometric contraction.
    KNAPPEIS GG; CARLSEN F
    J Biophys Biochem Cytol; 1956 Mar; 2(2):201-11. PubMed ID: 13319381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tension in frog single muscle fibers while shortening actively and passively at velocities near Vu.
    Morgan DL; Claflin DR; Julian FJ
    Biophys J; 1990 May; 57(5):1001-7. PubMed ID: 2340339
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heat production of rat anococcygeus muscle during isometric contraction.
    Walker JS; Wendt IR; Gibbs CL
    Am J Physiol; 1988 Oct; 255(4 Pt 1):C536-42. PubMed ID: 3177627
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A theoretical and semi-empirical approach of muscle mechanics and energetics, independent of the mechanical role of the crossbridges. Part II: Energetics of a whole muscle.
    Morel JE
    Prog Biophys Mol Biol; 1984; 44(1):73-96. PubMed ID: 6385133
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.