BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 34075391)

  • 1. Regulation of RNA polymerase II activity is essential for terminal erythroid maturation.
    Murphy ZC; Murphy K; Myers J; Getman M; Couch T; Schulz VP; Lezon-Geyda K; Palumbo C; Yan H; Mohandas N; Gallagher PG; Steiner LA
    Blood; 2021 Nov; 138(18):1740-1756. PubMed ID: 34075391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene induction and repression during terminal erythropoiesis are mediated by distinct epigenetic changes.
    Wong P; Hattangadi SM; Cheng AW; Frampton GM; Young RA; Lodish HF
    Blood; 2011 Oct; 118(16):e128-38. PubMed ID: 21860024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impairment of human terminal erythroid differentiation by histone deacetylase 5 deficiency.
    Wang Y; Li W; Schulz VP; Zhao H; Qu X; Qi Q; Cheng Y; Guo X; Zhang S; Wei X; Liu D; Yazdanbakhsh K; Hillyer CD; Mohandas N; Chen L; Gallagher PG; An X
    Blood; 2021 Oct; 138(17):1615-1627. PubMed ID: 34036344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic Determinants of Erythropoiesis: Role of the Histone Methyltransferase SetD8 in Promoting Erythroid Cell Maturation and Survival.
    DeVilbiss AW; Sanalkumar R; Hall BD; Katsumura KR; de Andrade IF; Bresnick EH
    Mol Cell Biol; 2015 Jun; 35(12):2073-87. PubMed ID: 25855754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Methyltransferase Setd8 Is Essential for Erythroblast Survival and Maturation.
    Malik J; Lillis JA; Couch T; Getman M; Steiner LA
    Cell Rep; 2017 Nov; 21(9):2376-2383. PubMed ID: 29186677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone methyltransferase Setd8 represses Gata2 expression and regulates erythroid maturation.
    Malik J; Getman M; Steiner LA
    Mol Cell Biol; 2015 Jun; 35(12):2059-72. PubMed ID: 25848090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The histone methyltransferase Setd8 alters the chromatin landscape and regulates the expression of key transcription factors during erythroid differentiation.
    Myers JA; Couch T; Murphy Z; Malik J; Getman M; Steiner LA
    Epigenetics Chromatin; 2020 Mar; 13(1):16. PubMed ID: 32178723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption of erythroid nuclear opening and histone release in myelodysplastic syndromes.
    Zhao B; Liu H; Mei Y; Liu Y; Han X; Yang J; Wickrema A; Ji P
    Cancer Med; 2019 Mar; 8(3):1169-1174. PubMed ID: 30701702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epo-induced erythroid maturation is dependent on Plcγ1 signaling.
    Schnöder TM; Arreba-Tutusaus P; Griehl I; Bullinger L; Buschbeck M; Lane SW; Döhner K; Plass C; Lipka DB; Heidel FH; Fischer T
    Cell Death Differ; 2015 Jun; 22(6):974-85. PubMed ID: 25394487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histones to the cytosol: exportin 7 is essential for normal terminal erythroid nuclear maturation.
    Hattangadi SM; Martinez-Morilla S; Patterson HC; Shi J; Burke K; Avila-Figueroa A; Venkatesan S; Wang J; Paulsen K; Görlich D; Murata-Hori M; Lodish HF
    Blood; 2014 Sep; 124(12):1931-40. PubMed ID: 25092175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic and Transcriptional Control of Erythropoiesis.
    Wells M; Steiner L
    Front Genet; 2022; 13():805265. PubMed ID: 35330735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression.
    Cheng Y; Wu W; Kumar SA; Yu D; Deng W; Tripic T; King DC; Chen KB; Zhang Y; Drautz D; Giardine B; Schuster SC; Miller W; Chiaromonte F; Zhang Y; Blobel GA; Weiss MJ; Hardison RC
    Genome Res; 2009 Dec; 19(12):2172-84. PubMed ID: 19887574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a novel putative mitochondrial protein FAM210B associated with erythroid differentiation.
    Kondo A; Fujiwara T; Okitsu Y; Fukuhara N; Onishi Y; Nakamura Y; Sawada K; Harigae H
    Int J Hematol; 2016 Apr; 103(4):387-95. PubMed ID: 26968549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin condensation in terminally differentiating mouse erythroblasts does not involve special architectural proteins but depends on histone deacetylation.
    Popova EY; Krauss SW; Short SA; Lee G; Villalobos J; Etzell J; Koury MJ; Ney PA; Chasis JA; Grigoryev SA
    Chromosome Res; 2009; 17(1):47-64. PubMed ID: 19172406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Down-regulation of Myc is essential for terminal erythroid maturation.
    Jayapal SR; Lee KL; Ji P; Kaldis P; Lim B; Lodish HF
    J Biol Chem; 2010 Dec; 285(51):40252-65. PubMed ID: 20940306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in heat shock protein synthesis and hsp70 gene transcription during erythropoiesis of Xenopus laevis.
    Winning RS; Browder LW
    Dev Biol; 1988 Jul; 128(1):111-20. PubMed ID: 2454851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding terminal erythropoiesis: An update on chromatin condensation, enucleation, and reticulocyte maturation.
    Mei Y; Liu Y; Ji P
    Blood Rev; 2021 Mar; 46():100740. PubMed ID: 32798012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CTCF and CohesinSA-1 Mark Active Promoters and Boundaries of Repressive Chromatin Domains in Primary Human Erythroid Cells.
    Steiner LA; Schulz V; Makismova Y; Lezon-Geyda K; Gallagher PG
    PLoS One; 2016; 11(5):e0155378. PubMed ID: 27219007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Codanin-1 mutations engineered in human erythroid cells demonstrate role of CDAN1 in terminal erythroid maturation.
    Murphy ZC; Getman MR; Myers JA; Burgos Villar KN; Leshen E; Kurita R; Nakamura Y; Steiner LA
    Exp Hematol; 2020 Nov; 91():32-38.e6. PubMed ID: 33075436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome dynamics during human erythroid differentiation and development.
    Yang Y; Wang H; Chang KH; Qu H; Zhang Z; Xiong Q; Qi H; Cui P; Lin Q; Ruan X; Yang Y; Li Y; Shu C; Li Q; Wakeland EK; Yan J; Hu S; Fang X
    Genomics; 2013; 102(5-6):431-441. PubMed ID: 24121002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.