BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 34075637)

  • 21. Mutualistic Effects of the Myeloid-Derived Suppressor Cells and Cancer Stem Cells in the Tumor Microenvironment.
    Tanriover G; Aytac G
    Crit Rev Oncog; 2019; 24(1):61-67. PubMed ID: 31679221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Programmed Death-Ligand 1 Expression Potentiates the Immune Modulatory Function Of Myeloid-Derived Suppressor Cells in Systemic Lupus Erythematosus.
    Park MJ; Baek JA; Choi JW; Jang SG; Kim DS; Park SH; Cho ML; Kwok SK
    Front Immunol; 2021; 12():606024. PubMed ID: 33986739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy metabolism drives myeloid-derived suppressor cell differentiation and functions in pathology.
    Sica A; Strauss L
    J Leukoc Biol; 2017 Aug; 102(2):325-334. PubMed ID: 28223316
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New Insights into the Multifaceted Role of Myeloid-Derived Suppressor Cells (MDSCs) in High-Grade Gliomas: From Metabolic Reprograming, Immunosuppression, and Therapeutic Resistance to Current Strategies for Targeting MDSCs.
    Lakshmanachetty S; Cruz-Cruz J; Hoffmeyer E; Cole AP; Mitra SS
    Cells; 2021 Apr; 10(4):. PubMed ID: 33919732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Myeloid-derived suppressor cells and regulatory T cells share common immunoregulatory pathways-related microRNAs that are dysregulated by acute lymphoblastic leukemia and chemotherapy.
    Labib Salem M; Zidan AA; Ezz El-Din El-Naggar R; Attia Saad M; El-Shanshory M; Bakry U; Zidan M
    Hum Immunol; 2021 Jan; 82(1):36-45. PubMed ID: 33162185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suppressive role of myeloid-derived suppressor cells (MDSCs) in the microenvironment of breast cancer and targeted immunotherapies.
    Shou D; Wen L; Song Z; Yin J; Sun Q; Gong W
    Oncotarget; 2016 Sep; 7(39):64505-64511. PubMed ID: 27542274
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy.
    Adeshakin AO; Liu W; Adeshakin FO; Afolabi LO; Zhang M; Zhang G; Wang L; Li Z; Lin L; Cao Q; Yan D; Wan X
    Cell Immunol; 2021 Apr; 362():104286. PubMed ID: 33524739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MDSCs: Key Criminals of Tumor Pre-metastatic Niche Formation.
    Wang Y; Ding Y; Guo N; Wang S
    Front Immunol; 2019; 10():172. PubMed ID: 30792719
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasticity and biological diversity of myeloid derived suppressor cells.
    Ben-Meir K; Twaik N; Baniyash M
    Curr Opin Immunol; 2018 Apr; 51():154-161. PubMed ID: 29614426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Myeloid-derived suppressor cells in transplantation tolerance induction.
    Cao P; Sun Z; Feng C; Zhang J; Zhang F; Wang W; Zhao Y
    Int Immunopharmacol; 2020 Jun; 83():106421. PubMed ID: 32217462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expansion and functions of myeloid-derived suppressor cells in the tumor microenvironment.
    Qu P; Wang LZ; Lin PC
    Cancer Lett; 2016 Sep; 380(1):253-6. PubMed ID: 26519756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Beyond immunosuppressive effects: dual roles of myeloid-derived suppressor cells in bone-related diseases.
    Ling Z; Yang C; Tan J; Dou C; Chen Y
    Cell Mol Life Sci; 2021 Dec; 78(23):7161-7183. PubMed ID: 34635950
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic reprogramming of myeloid-derived suppressor cells in the context of organ transplantation.
    Iske J; Cao Y; Roesel MJ; Shen Z; Nian Y
    Cytotherapy; 2023 Aug; 25(8):789-797. PubMed ID: 37204374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of the Neutrophil in the Pathogenesis of Advanced Cancer and Impaired Responsiveness to Therapy.
    Rapoport BL; Steel HC; Theron AJ; Smit T; Anderson R
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32244751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immunometabolic Checkpoints of Treg Dynamics: Adaptation to Microenvironmental Opportunities and Challenges.
    Pacella I; Piconese S
    Front Immunol; 2019; 10():1889. PubMed ID: 31507585
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion.
    De Cicco P; Ercolano G; Ianaro A
    Front Immunol; 2020; 11():1680. PubMed ID: 32849585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic reprograming of MDSCs within tumor microenvironment and targeting for cancer immunotherapy.
    Li Q; Xiang M
    Acta Pharmacol Sin; 2022 Jun; 43(6):1337-1348. PubMed ID: 34561553
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Myeloid-derived suppressor cells: The green light for myeloma immune escape.
    Malek E; de Lima M; Letterio JJ; Kim BG; Finke JH; Driscoll JJ; Giralt SA
    Blood Rev; 2016 Sep; 30(5):341-8. PubMed ID: 27132116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Myeloid-derived suppressor cells and their role in pancreatic cancer.
    Pergamo M; Miller G
    Cancer Gene Ther; 2017 Mar; 24(3):100-105. PubMed ID: 27910857
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Myeloid-derived suppressor cells: Important communicators in systemic lupus erythematosus pathogenesis and its potential therapeutic significance.
    Asgarzade A; Ziyabakhsh A; Asghariazar V; Safarzadeh E
    Hum Immunol; 2021 Oct; 82(10):782-790. PubMed ID: 34272089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.