These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 34075725)
61. Rational Design of an Electron/Ion Dual-Conductive Cathode Framework for High-Performance All-Solid-State Lithium Batteries. Wang J; Yan X; Zhang Z; Guo R; Ying H; Han G; Han WQ ACS Appl Mater Interfaces; 2020 Sep; 12(37):41323-41332. PubMed ID: 32830944 [TBL] [Abstract][Full Text] [Related]
62. Controllable magnetic field aligned sepiolite nanowires for high ionic conductivity and high safety PEO solid polymer electrolytes. Han L; Wang J; Mu X; Wu T; Liao C; Wu N; Xing W; Song L; Kan Y; Hu Y J Colloid Interface Sci; 2021 Mar; 585():596-604. PubMed ID: 33121754 [TBL] [Abstract][Full Text] [Related]
63. Tri-Doping of Sol-Gel Synthesized Garnet-Type Oxide Solid-State Electrolyte. Kim M; Kim G; Lee H Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33513768 [TBL] [Abstract][Full Text] [Related]
64. All-Solid-State Lithium-Ion Batteries with Oxide/Sulfide Composite Electrolytes. Park YS; Lee JM; Yi EJ; Moon JW; Hwang H Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33923542 [TBL] [Abstract][Full Text] [Related]
65. Efficient Mutual-Compensating Li-Loss Strategy toward Highly Conductive Garnet Ceramics for Li-Metal Solid-State Batteries. Yang L; Tao X; Huang X; Zou C; Yi L; Chen X; Zang Z; Luo Z; Wang X ACS Appl Mater Interfaces; 2021 Dec; 13(47):56054-56063. PubMed ID: 34788000 [TBL] [Abstract][Full Text] [Related]
66. Cathode Interface Compatibility of Amorphous LiMn Delluva AA; Dudoff J; Teeter G; Holewinski A ACS Appl Mater Interfaces; 2020 Jun; 12(22):24992-24999. PubMed ID: 32368893 [TBL] [Abstract][Full Text] [Related]
67. Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer. Luo W; Gong Y; Zhu Y; Li Y; Yao Y; Zhang Y; Fu KK; Pastel G; Lin CF; Mo Y; Wachsman ED; Hu L Adv Mater; 2017 Jun; 29(22):. PubMed ID: 28417487 [TBL] [Abstract][Full Text] [Related]
68. Behind the Candelabra: A Facile Flame Vapor Deposition Method for Interfacial Engineering of Garnet Electrolyte To Enable Ultralong Cycling Solid-State Li-FeF Zhang Y; Meng J; Chen K; Wu Q; Wu X; Li C ACS Appl Mater Interfaces; 2020 Jul; 12(30):33729-33739. PubMed ID: 32602697 [TBL] [Abstract][Full Text] [Related]
69. Revealing the Superiority of Fast Ion Conductor in Composite Electrolyte for Dendrite-Free Lithium-Metal Batteries. Chen H; Zhou CJ; Dong XR; Yan M; Liang JY; Xin S; Wu XW; Guo YG; Zeng XX ACS Appl Mater Interfaces; 2021 May; 13(19):22978-22986. PubMed ID: 33945250 [TBL] [Abstract][Full Text] [Related]
70. In Situ Formed Shields Enabling Li Wu JF; Pu BW; Wang D; Shi SQ; Zhao N; Guo X; Guo X ACS Appl Mater Interfaces; 2019 Jan; 11(1):898-905. PubMed ID: 30516385 [TBL] [Abstract][Full Text] [Related]
71. Silica-assisted cross-linked polymer electrolyte membrane with high electrochemical stability for lithium-ion batteries. Li C; Huang Y; Feng X; Zhang Z; Gao H; Huang J J Colloid Interface Sci; 2021 Jul; 594():1-8. PubMed ID: 33744729 [TBL] [Abstract][Full Text] [Related]
72. Nanoporous Adsorption Effect on Alteration of the Li Li W; Zhang S; Wang B; Gu S; Xu D; Wang J; Chen C; Wen Z ACS Appl Mater Interfaces; 2018 Jul; 10(28):23874-23882. PubMed ID: 29920207 [TBL] [Abstract][Full Text] [Related]
73. Toward robust solid-state lithium metal batteries by stabilizing a polyethylene oxide-based solid electrolyte interface with a biomass polymer filler. Hu B; Han S; Zhang J; Zhu A; Fan Z; Xu T; Xu C; Huang Z; Zhu T; Xu J J Colloid Interface Sci; 2023 Nov; 650(Pt A):203-210. PubMed ID: 37402326 [TBL] [Abstract][Full Text] [Related]
74. Quasi-Solid-State Ion-Conducting Arrays Composite Electrolytes with Fast Ion Transport Vertical-Aligned Interfaces for All-Weather Practical Lithium-Metal Batteries. Li X; Wang Y; Xi K; Yu W; Feng J; Gao G; Wu H; Jiang Q; Abdelkader A; Hua W; Zhong G; Ding S Nanomicro Lett; 2022 Oct; 14(1):210. PubMed ID: 36315314 [TBL] [Abstract][Full Text] [Related]
75. Ion-Dipole Interaction Regulation Enables High-Performance Single-Ion Polymer Conductors for Solid-State Batteries. Wen K; Xin C; Guan S; Wu X; He S; Xue C; Liu S; Shen Y; Li L; Nan CW Adv Mater; 2022 Aug; 34(32):e2202143. PubMed ID: 35726177 [TBL] [Abstract][Full Text] [Related]
76. Single Lithium-Ion Conducting Solid Polymer Electrolyte with Superior Electrochemical Stability and Interfacial Compatibility for Solid-State Lithium Metal Batteries. Yuan H; Luan J; Yang Z; Zhang J; Wu Y; Lu Z; Liu H ACS Appl Mater Interfaces; 2020 Feb; 12(6):7249-7256. PubMed ID: 31916745 [TBL] [Abstract][Full Text] [Related]
77. Multinuclear NMR Study of the Solid Electrolyte Interface Formed in Lithium Metal Batteries. Wan C; Xu S; Hu MY; Cao R; Qian J; Qin Z; Liu J; Mueller KT; Zhang JG; Hu JZ ACS Appl Mater Interfaces; 2017 May; 9(17):14741-14748. PubMed ID: 28375601 [TBL] [Abstract][Full Text] [Related]
78. Enhancing Interfacial Contact in Solid-State Batteries with a Gradient Composite Solid Electrolyte. Deng C; Chen N; Hou C; Liu H; Zhou Z; Chen R Small; 2021 May; 17(18):e2006578. PubMed ID: 33742535 [TBL] [Abstract][Full Text] [Related]
79. Three-Dimensional Porous Alginate Fiber Membrane Reinforced PEO-Based Solid Polymer Electrolyte for Safe and High-Performance Lithium Ion Batteries. Zeng F; Sun Y; Hui B; Xia Y; Zou Y; Zhang X; Yang D ACS Appl Mater Interfaces; 2020 Sep; 12(39):43805-43812. PubMed ID: 32897049 [TBL] [Abstract][Full Text] [Related]
80. Overcoming the Interfacial Limitations Imposed by the Solid-Solid Interface in Solid-State Batteries Using Ionic Liquid-Based Interlayers. Pervez SA; Kim G; Vinayan BP; Cambaz MA; Kuenzel M; Hekmatfar M; Fichtner M; Passerini S Small; 2020 Apr; 16(14):e2000279. PubMed ID: 32105407 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]