BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34075745)

  • 1. How Multilayered Feathers Enhance Underwater Superhydrophobicity.
    Ahmadi SF; Umashankar V; Dean Z; Chang B; Jung S; Boreyko JB
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27567-27574. PubMed ID: 34075745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability.
    Lee BJ; Zhang Z; Baek S; Kim S; Kim D; Yong K
    Sci Rep; 2016 Apr; 6():24653. PubMed ID: 27095674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast Self-Healing Superhydrophobic Surface for Underwater Drag Reduction.
    Sun P; Feng X; Tian G; Zhang X; Chu J
    Langmuir; 2022 Sep; 38(35):10875-10885. PubMed ID: 36001007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment.
    Liu Y; Chen X; Xin JH
    Bioinspir Biomim; 2008 Dec; 3(4):046007. PubMed ID: 18997276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Underwater sustainability of the "Cassie" state of wetting.
    Bobji MS; Kumar SV; Asthana A; Govardhan RN
    Langmuir; 2009 Oct; 25(20):12120-6. PubMed ID: 19821621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survivability of highly pathogenic avian influenza virus (H5N1) in naturally preened duck feathers at different temperatures.
    Karunakaran AC; Murugkar HV; Kumar M; Nagarajan S; Tosh C; Pathak A; Mekhemadhom Rajendrakumar A; Agarwal RK
    Transbound Emerg Dis; 2019 May; 66(3):1306-1313. PubMed ID: 30861310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superhydrophobicity of lotus leaves versus birds wings: different physical mechanisms leading to similar phenomena.
    Bormashenko E; Gendelman O; Whyman G
    Langmuir; 2012 Oct; 28(42):14992-7. PubMed ID: 22992036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition.
    Bormashenko E; Bormashenko Y; Stein T; Whyman G; Bormashenko E
    J Colloid Interface Sci; 2007 Jul; 311(1):212-6. PubMed ID: 17359990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metastable states and wetting transition of submerged superhydrophobic structures.
    Lv P; Xue Y; Shi Y; Lin H; Duan H
    Phys Rev Lett; 2014 May; 112(19):196101. PubMed ID: 24877948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superhydrophobic surfaces for extreme environmental conditions.
    Lambley H; Schutzius TM; Poulikakos D
    Proc Natl Acad Sci U S A; 2020 Nov; 117(44):27188-27194. PubMed ID: 33077603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superhydrophobic Surface with Stepwise Multilayered Micro- and Nanostructure and an Investigation of Its Corrosion Resistance.
    Tong W; Karthik N; Li J; Wang N; Xiong D
    Langmuir; 2019 Nov; 35(47):15078-15085. PubMed ID: 31682454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma treatment induced wetting transitions on biological tissue (pigeon feathers).
    Bormashenko E; Grynyov R
    Colloids Surf B Biointerfaces; 2012 Apr; 92():367-71. PubMed ID: 22221456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layers of air in the water beneath the floating fern Salvinia are exposed to fluctuations in pressure.
    Mayser MJ; Barthlott W
    Integr Comp Biol; 2014 Dec; 54(6):1001-7. PubMed ID: 24925548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinspired Design of Underwater Superaerophobic and Superaerophilic Surfaces by Femtosecond Laser Ablation for Anti- or Capturing Bubbles.
    Yong J; Chen F; Fang Y; Huo J; Yang Q; Zhang J; Bian H; Hou X
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39863-39871. PubMed ID: 29067804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving digestibility of feather meal by steam flash explosion.
    Zhang Y; Yang R; Zhao W
    J Agric Food Chem; 2014 Apr; 62(13):2745-51. PubMed ID: 24617674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchically nanotextured surfaces maintaining superhydrophobicity under severely adverse conditions.
    Maitra T; Antonini C; Auf der Mauer M; Stamatopoulos C; Tiwari MK; Poulikakos D
    Nanoscale; 2014 Aug; 6(15):8710-9. PubMed ID: 24947006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low Drag Porous Ship with Superhydrophobic and Superoleophilic Surface for Oil Spills Cleanup.
    Wang G; Zeng Z; Wang H; Zhang L; Sun X; He Y; Li L; Wu X; Ren T; Xue Q
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26184-94. PubMed ID: 26562211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water Impalement Resistance and Drag Reduction of the Superhydrophobic Surface with Hydrophilic Strips.
    Cao Y; Liu X; Zhang L; Wu Y; You C; Li H; Duan H; Huang J; Lv P
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16973-16982. PubMed ID: 38502909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces.
    Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J
    Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous recovery of superhydrophobicity on nanotextured surfaces.
    Prakash S; Xi E; Patel AJ
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5508-13. PubMed ID: 27140619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.