BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34075906)

  • 1. TCF-ALP: a fluorescent probe for the selective detection of
    Gwynne L; Williams GT; Yan KC; Patenall BL; Gardiner JE; He XP; Maillard JY; James TD; Sedgwick AC; Jenkins ATA
    Biomater Sci; 2021 Jun; 9(12):4433-4439. PubMed ID: 34075906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prototype Development of the Intelligent Hydrogel Wound Dressing and Its Efficacy in the Detection of Model Pathogenic Wound Biofilms.
    Thet NT; Alves DR; Bean JE; Booth S; Nzakizwanayo J; Young AE; Jones BV; Jenkins AT
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):14909-19. PubMed ID: 26492095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cadexomer iodine provides superior efficacy against bacterial wound biofilms in vitro and in vivo.
    Fitzgerald DJ; Renick PJ; Forrest EC; Tetens SP; Earnest DN; McMillan J; Kiedaisch BM; Shi L; Roche ED
    Wound Repair Regen; 2017 Jan; 25(1):13-24. PubMed ID: 27859922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long Wavelength TCF-Based Fluorescent Probe for the Detection of Alkaline Phosphatase in Live Cells.
    Gwynne L; Sedgwick AC; Gardiner JE; Williams GT; Kim G; Lowe JP; Maillard JY; Jenkins ATA; Bull SD; Sessler JL; Yoon J; James TD
    Front Chem; 2019; 7():255. PubMed ID: 31119120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TCF-based fluorescent probe for monitoring superoxide anion produced in bacteria under chloramphenicol- and heat-induced stress.
    Yan KC; Patenall BL; Gardiner JE; Heylen RA; Thet N; He XP; Sedgwick AC; James TD; Jenkins ATA
    Chem Commun (Camb); 2022 Nov; 58(94):13103-13106. PubMed ID: 36342473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling methicillin resistant Staphyloccocus aureus and Pseudomonas aeruginosa wound infections with a novel biomaterial.
    Martineau L; Davis SC; Peng HT; Hung A
    J Invest Surg; 2007; 20(4):217-27. PubMed ID: 17710602
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Thet NT; Mercer-Chalmers J; Greenwood RJ; Young AER; Coy K; Booth S; Sack A; Jenkins ATA
    ACS Sens; 2020 Aug; 5(8):2652-2657. PubMed ID: 32786390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ability of a colloidal silver gel wound dressing to kill bacteria in vitro and in vivo.
    Tran PL; Huynh E; Hamood AN; de Souza A; Mehta D; Moeller KW; Moeller CD; Morgan M; Reid TW
    J Wound Care; 2017 Apr; 26(sup4):S16-S24. PubMed ID: 28379105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibiofilm activity of chitosan/epsilon-poly-L-lysine hydrogels in a porcine ex vivo skin wound polymicrobial biofilm model.
    Pati BA; Kurata WE; Horseman TS; Pierce LM
    Wound Repair Regen; 2021 Mar; 29(2):316-326. PubMed ID: 33480137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of internally validated
    Suleman L; Purcell L; Thomas H; Westgate S
    J Wound Care; 2020 Mar; 29(3):154-161. PubMed ID: 32160088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of reactive oxygen species-responsive antibacterial microneedles on the full-thickness skin defect wounds with bacterial colonization in diabetic mice].
    Zhang QR; Yang X; Li Z; Jia JZ; Luo GX; Yu YL; Zhang Y
    Zhonghua Shao Shang Za Zhi; 2021 Nov; 37(11):1024-1035. PubMed ID: 34794254
    [No Abstract]   [Full Text] [Related]  

  • 12. The Efficacy of Tetrasodium EDTA on Biofilms.
    Percival SL; Salisbury AM
    Adv Exp Med Biol; 2018; 1057():101-110. PubMed ID: 29280095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in silico evaluation of the inhibitory effect of a curcumin-based oxovanadium (IV) complex on alkaline phosphatase activity and bacterial biofilm formation.
    Katsipis G; Tsalouxidou V; Halevas E; Geromichalou E; Geromichalos G; Pantazaki AA
    Appl Microbiol Biotechnol; 2021 Jan; 105(1):147-168. PubMed ID: 33191462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled-release iodine foam dressings demonstrate broad-spectrum biofilm management in several in vitro models.
    Salisbury AM; Mullin M; Foulkes L; Chen R; Percival SL
    Int Wound J; 2022 Nov; 19(7):1717-1728. PubMed ID: 35166016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel flow-system to establish experimental biofilms for modelling chronic wound infection and testing the efficacy of wound dressings.
    Duckworth PF; Rowlands RS; Barbour ME; Maddocks SE
    Microbiol Res; 2018 Oct; 215():141-147. PubMed ID: 30172300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recyclable metal nanoparticle-immobilized polymer dot on montmorillonite for alkaline phosphatase-based colorimetric sensor with photothermal ablation of Bacteria.
    Robby AI; Park SY
    Anal Chim Acta; 2019 Nov; 1082():152-164. PubMed ID: 31472704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A surfactant-based wound dressing can reduce bacterial biofilms in a porcine skin explant model.
    Yang Q; Larose C; Della Porta AC; Schultz GS; Gibson DJ
    Int Wound J; 2017 Apr; 14(2):408-413. PubMed ID: 27212453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel dressing with silver to treat meticillin-resistant
    Davis SC; Li J; Gil J; Valdes J; Solis M; Higa A
    J Wound Care; 2022 Feb; 31(Sup2):S42-S48. PubMed ID: 35148641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic modeling of a chronic wound biofilm consortium predicts spatial partitioning of bacterial species.
    Phalak P; Chen J; Carlson RP; Henson MA
    BMC Syst Biol; 2016 Sep; 10(1):90. PubMed ID: 27604263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual Burst and Sustained Release of
    Du C; Fikhman DA; Persaud D; Monroe MBB
    ACS Appl Mater Interfaces; 2023 May; 15(20):24228-24243. PubMed ID: 37186803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.