These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34075985)

  • 1. Coordination-driven self-assembly of anthraquinone-based metal-organic cages for photocatalytic selective [2 + 2] cycloaddition.
    Jin Y; Jiang H; Tang X; Zhang W; Liu Y; Cui Y
    Dalton Trans; 2021 Jun; 50(24):8533-8539. PubMed ID: 34075985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cage-confined photocatalysis for wide-scope unusually selective [2 + 2] cycloaddition through visible-light triplet sensitization.
    Wang JS; Wu K; Yin C; Li K; Huang Y; Ruan J; Feng X; Hu P; Su CY
    Nat Commun; 2020 Sep; 11(1):4675. PubMed ID: 32938933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visible-Light Photocatalysis of Asymmetric [2+2] Cycloaddition in Cage-Confined Nanospace Merging Chirality with Triplet-State Photosensitization.
    Guo J; Fan YZ; Lu YL; Zheng SP; Su CY
    Angew Chem Int Ed Engl; 2020 May; 59(22):8661-8669. PubMed ID: 32011801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bridging the Homogeneous and Heterogeneous Catalysis by Supramolecular Metal-Organic Cages with Varied Packing Modes.
    Kan L; Zhang L; Dong LZ; Wang XH; Li RH; Guo C; Li X; Yan Y; Li SL; Lan YQ
    Adv Mater; 2024 Apr; 36(15):e2310061. PubMed ID: 38227292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controllable coordination-driven self-assembly: from discrete metallocages to infinite cage-based frameworks.
    Chen L; Chen Q; Wu M; Jiang F; Hong M
    Acc Chem Res; 2015 Feb; 48(2):201-10. PubMed ID: 25517043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and synthesis of functionalized coordination polymers as recyclable heterogeneous photocatalysts.
    Ye CP; Xu G; Wang Z; Han J; Xue L; Cao FY; Zhang Q; Yang LF; Lin LZ; Chen XD
    Dalton Trans; 2018 May; 47(18):6470-6478. PubMed ID: 29691537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Assembly of Chiral Coordination Cages for Asymmetric Sequential Reactions.
    Jiao J; Tan C; Li Z; Liu Y; Han X; Cui Y
    J Am Chem Soc; 2018 Feb; 140(6):2251-2259. PubMed ID: 29346728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Assembly of a Chiral Metallosalen-Based Octahedral Coordination Cage for Supramolecular Asymmetric Catalysis.
    Tan C; Jiao J; Li Z; Liu Y; Han X; Cui Y
    Angew Chem Int Ed Engl; 2018 Feb; 57(8):2085-2090. PubMed ID: 29278285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Self-Expanding Metal-Organic Cages Using a Ring-Openable Ligand.
    Nishijima A; Osugi Y; Uemura T
    Angew Chem Int Ed Engl; 2024 Apr; 63(17):e202404155. PubMed ID: 38453647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cation-Anion Arrangement Patterns in Self-Assembled Pd
    Clever GH; Punt P
    Acc Chem Res; 2017 Sep; 50(9):2233-2243. PubMed ID: 28817257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixed-Ligand Metal-Organic Frameworks and Heteroleptic Coordination Cages as Multifunctional Scaffolds-A Comparison.
    Pullen S; Clever GH
    Acc Chem Res; 2018 Dec; 51(12):3052-3064. PubMed ID: 30379523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soluble imidazolium-functionalized coordination cages for efficient homogeneous catalysis of CO
    Tong HY; Liang J; Wu QJ; Zou YH; Huang YB; Cao R
    Chem Commun (Camb); 2021 Mar; 57(17):2140-2143. PubMed ID: 33528467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric Catalysis within the Chiral Confined Space of Metal-Organic Architectures.
    Li X; Wu J; He C; Meng Q; Duan C
    Small; 2019 Aug; 15(32):e1804770. PubMed ID: 30714307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Component Metal-Organic Frameworks Significantly Boost Visible-Light-Driven Hydrogen Production Coupled with Selective Organic Oxidation.
    Li H; Yang Y; Jing X; He C; Duan C
    Chem Asian J; 2021 May; 16(10):1237-1244. PubMed ID: 33769702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Organic Cages with {SiW
    Chang Q; Meng X; Ruan W; Feng Y; Li R; Zhu J; Ding Y; Lv H; Wang W; Chen G; Fang X
    Angew Chem Int Ed Engl; 2022 May; 61(19):e202117637. PubMed ID: 35199906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unlocking High Porosity: Post-Synthetic Solvothermal Treatment of Cu-Paddlewheel Based Metal-Organic Cages.
    Lee B; Go B; Jung B; Park J
    Small; 2024 Jun; 20(23):e2308393. PubMed ID: 38150648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly and Covalent Cross-Linking of an Amine-Functionalised Metal-Organic Cage.
    Schneider ML; Markwell-Heys AW; Linder-Patton OM; Bloch WM
    Front Chem; 2021; 9():696081. PubMed ID: 34113604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular engineering of confined space in metal-organic cages.
    Lewis JEM
    Chem Commun (Camb); 2022 Dec; 58(100):13873-13886. PubMed ID: 36448362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homochiral D4-symmetric metal-organic cages from stereogenic Ru(II) metalloligands for effective enantioseparation of atropisomeric molecules.
    Wu K; Li K; Hou YJ; Pan M; Zhang LY; Chen L; Su CY
    Nat Commun; 2016 Feb; 7():10487. PubMed ID: 26839048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular Design of Porous Soft Materials via Self-Organization of Metal-Organic Cages.
    Hosono N; Kitagawa S
    Acc Chem Res; 2018 Oct; 51(10):2437-2446. PubMed ID: 30252435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.