These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34076312)

  • 1. Gallium Plasmonic Nanoantennas Unveiling Multiple Kinetics of Hydrogen Sensing, Storage, and Spillover.
    Losurdo M; Gutiérrez Y; Suvorova A; Giangregorio MM; Rubanov S; Brown AS; Moreno F
    Adv Mater; 2021 Jul; 33(29):e2100500. PubMed ID: 34076312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic coupling with most of the transition metals: a new family of broad band and near infrared nanoantennas.
    Manchon D; Lermé J; Zhang T; Mosset A; Jamois C; Bonnet C; Rye JM; Belarouci A; Broyer M; Pellarin M; Cottancin E
    Nanoscale; 2015 Jan; 7(3):1181-92. PubMed ID: 25488835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic hydrogen sensing with nanostructured metal hydrides.
    Wadell C; Syrenova S; Langhammer C
    ACS Nano; 2014 Dec; 8(12):11925-40. PubMed ID: 25427244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis.
    Wy Y; Jung H; Hong JW; Han SW
    Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 10×-Enhanced Heterogeneous Nanocatalysis on a Nanoporous Gold Disk Array with High-Density Hot Spots.
    Arnob MMP; Artur C; Misbah I; Mubeen S; Shih WC
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13499-13506. PubMed ID: 30873828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles.
    Zhao J; Jensen L; Sung J; Zou S; Schatz GC; Duyne RP
    J Am Chem Soc; 2007 Jun; 129(24):7647-56. PubMed ID: 17521187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancing Plasmon-Induced Selectivity in Chemical Transformations with Optically Coupled Transmission Electron Microscopy.
    Swearer DF; Bourgeois BB; Angell DK; Dionne JA
    Acc Chem Res; 2021 Oct; 54(19):3632-3642. PubMed ID: 34492177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavelength-Dependent Bifunctional Plasmonic Photocatalysis in Au/Chalcopyrite Hybrid Nanostructures.
    An X; Kays JC; Lightcap IV; Ouyang T; Dennis AM; Reinhard BM
    ACS Nano; 2022 Apr; 16(4):6813-6824. PubMed ID: 35349253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen Spillover between Single Gold Nanorods and Metal Oxide Supports: A Surface Plasmon Spectroscopy Study.
    Collins SS; Cittadini M; Pecharromán C; Martucci A; Mulvaney P
    ACS Nano; 2015 Aug; 9(8):7846-56. PubMed ID: 26154166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme.
    Langhammer C; Zorić I; Kasemo B; Clemens BM
    Nano Lett; 2007 Oct; 7(10):3122-7. PubMed ID: 17850168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localized surface plasmon resonance for enhanced electrocatalysis.
    Zhao J; Xue S; Ji R; Li B; Li J
    Chem Soc Rev; 2021 Nov; 50(21):12070-12097. PubMed ID: 34533143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Hot Electrons from Oxygen Vacancies for Infrared Light-Driven Catalytic CO
    Li Y; Wen M; Wang Y; Tian G; Wang C; Zhao J
    Angew Chem Int Ed Engl; 2021 Jan; 60(2):910-916. PubMed ID: 32939926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic gallium nanoparticles on polar semiconductors: interplay between nanoparticle wetting, localized surface plasmon dynamics, and interface charge.
    Wu PC; Losurdo M; Kim TH; Giangregorio M; Bruno G; Everitt HO; Brown AS
    Langmuir; 2009 Jan; 25(2):924-30. PubMed ID: 19105600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of gold nanoparticles on glass surface with polydopamine thin film for reliable LSPR sensing.
    Chen H; Zhao L; Chen D; Hu W
    J Colloid Interface Sci; 2015 Dec; 460():258-63. PubMed ID: 26343978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations.
    Wang H
    Sci Rep; 2018 Jun; 8(1):9589. PubMed ID: 29941992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and measurement of fiber optic localized surface plasmon resonance sensor based on gold nanoparticle dimer.
    Kim HM; Park JH; Lee SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 261():120034. PubMed ID: 34116419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.