These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34076368)

  • 1. Mitigation of the convergence issues associated with semi-replicated bioequivalence data.
    Fuglsang A
    Pharm Stat; 2021 Nov; 20(6):1232-1234. PubMed ID: 34076368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of models for average bioequivalence in replicated crossover designs.
    Willavize SA; Morgenthien EA
    Pharm Stat; 2006; 5(3):201-11. PubMed ID: 17080753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Professor Endrenyi's Legacy: An Evaluation of the Regulatory Requirement "Fixed Effects, Rather Than Random Effects, Should Be Used for All Terms".
    Fuglsang A
    J Pharm Pharm Sci; 2021; 24():413-420. PubMed ID: 34343469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On statistical power for average bioequivalence testing under replicated crossover designs.
    Wan H; Chow SC
    J Biopharm Stat; 2002 Aug; 12(3):295-309. PubMed ID: 12448572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical methods for the evaluation of individual bioequivalence criteria.
    Kimanani EK; Lavigne J; Potvin D
    Stat Med; 2000 Oct; 19(20):2775-95. PubMed ID: 11033575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Definition of individual bioequivalence: occasion-to-occasion versus mean switchability.
    Kimanani EK
    Stat Med; 2000 Oct; 19(20):2797-810. PubMed ID: 11033576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covariance pattern mixture models: Eliminating random effects to improve convergence and performance.
    McNeish D; Harring J
    Behav Res Methods; 2020 Jun; 52(3):947-979. PubMed ID: 31512175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Applying multilevel models in evaluation of bioequivalence (I)].
    Liu QL; Shen ZZ; Chen F; Li XS; Yang M
    Zhonghua Liu Xing Bing Xue Za Zhi; 2009 Dec; 30(12):1302-6. PubMed ID: 20193320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The subject-by-formulation interaction in multivariate bioequivalence.
    Cao L; Mathew T
    J Biopharm Stat; 2007; 17(3):367-79. PubMed ID: 17479387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subject-by-formulation interaction in determinations of individual bioequivalence: bias and prevalence.
    Endrenyi L; Tothfalusi L
    Pharm Res; 1999 Feb; 16(2):186-90. PubMed ID: 10100301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliable computing in estimation of variance components.
    Misztal I
    J Anim Breed Genet; 2008 Dec; 125(6):363-70. PubMed ID: 19134071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of the repeated cross-over designs in assessing bioequivalence.
    Liu JP
    Stat Med; 1995 May 15-30; 14(9-10):1067-78; discussion 1079-80. PubMed ID: 7569501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structural error-in-equation model to evaluate individual bioequivalence.
    Carrasco JL; Jover L
    Biom J; 2005 Oct; 47(5):623-34. PubMed ID: 16385903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic Lanczos estimation of genomic variance components for linear mixed-effects models.
    Border R; Becker S
    BMC Bioinformatics; 2019 Jul; 20(1):411. PubMed ID: 31362713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling covariance structure in the analysis of repeated measures data.
    Littell RC; Pendergast J; Natarajan R
    Stat Med; 2000 Jul; 19(13):1793-819. PubMed ID: 10861779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-based analyses of bioequivalence crossover trials using the stochastic approximation expectation maximisation algorithm.
    Dubois A; Lavielle M; Gsteiger S; Pigeolet E; Mentré F
    Stat Med; 2011 Sep; 30(21):2582-600. PubMed ID: 21793036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Application of multilevel models in the evaluation of bioequivalence (II).].
    Liu QL; Shen ZZ; Li XS; Chen F; Yang M
    Zhonghua Liu Xing Bing Xue Za Zhi; 2010 Mar; 31(3):333-9. PubMed ID: 20510066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating treatment means in a mixed-effect ANOVA model for bioequivalence studies.
    Hsuan FC
    Biometrics; 1993 Sep; 49(3):703-13. PubMed ID: 8241367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A semi-parametric Bayesian approach to average bioequivalence.
    Ghosh P; Rosner GL
    Stat Med; 2007 Mar; 26(6):1224-36. PubMed ID: 16832840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random-effects linear modeling and sample size tables for two special crossover designs of average bioequivalence studies: the four-period, two-sequence, two-formulation and six-period, three-sequence, three-formulation designs.
    Diaz FJ; Berg MJ; Krebill R; Welty T; Gidal BE; Alloway R; Privitera M
    Clin Pharmacokinet; 2013 Dec; 52(12):1033-43. PubMed ID: 24085600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.