These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34076433)

  • 1. Macroscale Superlubricity on Engineering Steel in the Presence of Black Phosphorus.
    Tang G; Wu Z; Su F; Wang H; Xu X; Li Q; Ma G; Chu PK
    Nano Lett; 2021 Jun; 21(12):5308-5315. PubMed ID: 34076433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Adaptive Macroscale Superlubricity Based on the Tribocatalytic Properties of Partially Oxidized Black Phosphorus.
    Gao K; Bin W; Berman D; Ren Y; Luo J; Xie G
    Nano Lett; 2023 Aug; 23(15):6823-6830. PubMed ID: 37486802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear-Induced Interfacial Structural Conversion Triggers Macroscale Superlubricity: From Black Phosphorus Nanoflakes to Phosphorus Oxide.
    Liu Y; Li J; Li J; Yi S; Ge X; Zhang X; Luo J
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31947-31956. PubMed ID: 34190525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward Robust Macroscale Superlubricity on Engineering Steel Substrate.
    Li P; Ju P; Ji L; Li H; Liu X; Chen L; Zhou H; Chen J
    Adv Mater; 2020 Sep; 32(36):e2002039. PubMed ID: 32715515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superlubricity of Black Phosphorus as Lubricant Additive.
    Wang W; Xie G; Luo J
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43203-43210. PubMed ID: 30419751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macroscale Superlubricity Enabled by Graphene-Coated Surfaces.
    Zhang Z; Du Y; Huang S; Meng F; Chen L; Xie W; Chang K; Zhang C; Lu Y; Lin CT; Li S; Parkin IP; Guo D
    Adv Sci (Weinh); 2020 Feb; 7(4):1903239. PubMed ID: 32099768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the Molecular Structure of 1,3-Diketones on the Realization of Oil-Based Superlubricity on Steel/Steel Friction Pairs.
    Du S; Zhang C; Luo Z
    Langmuir; 2024 Jan; 40(1):805-817. PubMed ID: 38134349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-Printed Topological MoS
    Zhao Y; Mei H; Chang P; Yang Y; Huang W; Liu Y; Cheng L; Zhang L
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34984-34995. PubMed ID: 34278775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macroscale Superlubricity and Polymorphism of Long-Chain
    Reddyhoff T; Ewen JP; Deshpande P; Frogley MD; Welch MD; Montgomery W
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9239-9251. PubMed ID: 33565870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium Citrate Triggered Macroscopic Superlubricity with Near-Zero Wear on an Amorphous Carbon Film.
    Sun S; Yi S; Li J; Ding Z; Song W; Luo J
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19705-19714. PubMed ID: 37018161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superlubricity and Antiwear Properties of In Situ-Formed Ionic Liquids at Ceramic Interfaces Induced by Tribochemical Reactions.
    Ge X; Li J; Zhang C; Liu Y; Luo J
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6568-6574. PubMed ID: 30657308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partially Oxidized Violet Phosphorus as an Excellent Lubricant Additive for Tribological Applications.
    Li Y; Gao K; Zhang Y; Jiao J; Zhang L; Xie G
    Nano Lett; 2023 Jul; 23(14):6292-6300. PubMed ID: 37410894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic Lubrication Effect between Oxidized Black Phosphorus and Oil Molecules Triggers Superlubricity.
    Li J; Li J
    J Phys Chem Lett; 2022 Sep; 13(35):8245-8253. PubMed ID: 36018294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen-Enhanced Catalytic Conversion of Amorphous Carbon to Graphene for Achieving Superlubricity.
    Li R; Yang X; Ma M; Zhang J
    Small; 2023 Mar; 19(10):e2206580. PubMed ID: 36642795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Friction. Macroscale superlubricity enabled by graphene nanoscroll formation.
    Berman D; Deshmukh SA; Sankaranarayanan SK; Erdemir A; Sumant AV
    Science; 2015 Jun; 348(6239):1118-22. PubMed ID: 25977372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macroscale Superlubricity Induced by MXene/MoS
    Macknojia A; Ayyagari A; Zambrano D; Rosenkranz A; Shevchenko EV; Berman D
    ACS Nano; 2023 Feb; 17(3):2421-2430. PubMed ID: 36696666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approaches for Achieving Superlubricity in Two-Dimensional Materials.
    Berman D; Erdemir A; Sumant AV
    ACS Nano; 2018 Mar; 12(3):2122-2137. PubMed ID: 29522673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid Superlubricity Enabled by the Synergy Effect of Graphene Oxide and Lithium Salts.
    Ge X; Chai Z; Shi Q; Liu Y; Tang J; Wang W
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechano-chemical decomposition of organic friction modifiers with multiple reactive centres induces superlubricity of ta-C.
    Kuwahara T; Romero PA; Makowski S; Weihnacht V; Moras G; Moseler M
    Nat Commun; 2019 Jan; 10(1):151. PubMed ID: 30635585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macroscale Superlubricity Enabled by Hydrated Alkali Metal Ions.
    Han T; Zhang C; Luo J
    Langmuir; 2018 Sep; 34(38):11281-11291. PubMed ID: 30175911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.