These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34076440)

  • 21. Density-matrix approach for the electroluminescence of molecules in a scanning tunneling microscope.
    Tian G; Liu JC; Luo Y
    Phys Rev Lett; 2011 Apr; 106(17):177401. PubMed ID: 21635061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-Molecule Time-Resolved Spectroscopy in a Tunable STM Nanocavity.
    Doležal J; Sagwal A; de Campos Ferreira RC; Švec M
    Nano Lett; 2024 Feb; 24(5):1629-1634. PubMed ID: 38286028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule.
    Kazuma E; Jung J; Ueba H; Trenary M; Kim Y
    Science; 2018 May; 360(6388):521-526. PubMed ID: 29724952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stability and structural phase transitions of cobalt porphyrin adlayers on Au(100) surfaces.
    Yoshimoto S
    Phys Chem Chem Phys; 2013 Aug; 15(30):12504-9. PubMed ID: 23689504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmon Squeezing in Single-Molecule Junctions.
    Nian LL; Wang T; Lü JT
    Nano Lett; 2022 Dec; 22(23):9418-9423. PubMed ID: 36449564
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoscale coupling of photons to vibrational excitation of Ag nanoparticle 2D array studied by scanning tunneling microscope light emission spectroscopy.
    Katano S; Toma K; Toma M; Tamada K; Uehara Y
    Phys Chem Chem Phys; 2010 Nov; 12(44):14749-53. PubMed ID: 20938548
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exciton-plasmon coupling and giant photoluminescence enhancement in monolayer MoS
    Mawlong LPL; Paul KK; Giri PK
    Nanotechnology; 2021 Mar; 32(21):. PubMed ID: 33578403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Signatures of Plexitonic States in Molecular Electroluminescence.
    Bergfield JP; Hendrickson JR
    Sci Rep; 2018 Feb; 8(1):2314. PubMed ID: 29396443
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular Evidence for the Catalytic Process of Cobalt Porphyrin Catalyzed Oxygen Evolution Reaction in Alkaline Solution.
    Wang X; Cai ZF; Wang D; Wan LJ
    J Am Chem Soc; 2019 May; 141(19):7665-7669. PubMed ID: 31050417
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmon enhanced luminescence from fullerene molecules excited by local electron tunneling.
    Rossel F; Pivetta M; Patthey F; Schneider WD
    Opt Express; 2009 Feb; 17(4):2714-21. PubMed ID: 19219176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of plasmon energetics on light emission induced by scanning tunneling microscopy.
    Miwa K; Sakaue M; Gumhalter B; Kasai H
    J Phys Condens Matter; 2014 Jun; 26(22):222001. PubMed ID: 24810264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. STM-induced light emission from thin films of perylene derivatives on the HOPG and Au substrates.
    Fujiki A; Miyake Y; Oshikane Y; Akai-Kasaya M; Saito A; Kuwahara Y
    Nanoscale Res Lett; 2011 Apr; 6(1):347. PubMed ID: 21711870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Single-Molecule Chemical Reaction Studied by High-Resolution Atomic Force Microscopy and Scanning Tunneling Microscopy Induced Light Emission.
    Kaiser K; Gross L; Schulz F
    ACS Nano; 2019 Jun; 13(6):6947-6954. PubMed ID: 31184117
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular hot electroluminescence due to strongly enhanced spontaneous emission rates in a plasmonic nanocavity.
    Chen G; Li XG; Zhang ZY; Dong ZC
    Nanoscale; 2015 Feb; 7(6):2442-9. PubMed ID: 25565003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Single Hydrogen Molecule as an Intensity Chopper in an Electrically Driven Plasmonic Nanocavity.
    Merino P; Rosławska A; Leon CC; Grewal A; Große C; González C; Kuhnke K; Kern K
    Nano Lett; 2019 Jan; 19(1):235-241. PubMed ID: 30558427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Near-Field Spectral Response of Optically Excited Scanning Tunneling Microscope Junctions Probed by Single-Molecule Action Spectroscopy.
    Böckmann H; Müller M; Hammud A; Willinger MG; Pszona M; Waluk J; Wolf M; Kumagai T
    J Phys Chem Lett; 2019 May; 10(9):2068-2074. PubMed ID: 30964304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-Photon Emission Mediated by Single-Electron Tunneling in Plasmonic Nanojunctions.
    Schaeverbeke Q; Avriller R; Frederiksen T; Pistolesi F
    Phys Rev Lett; 2019 Dec; 123(24):246601. PubMed ID: 31922843
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Luminescence from 3,4,9,10-perylenetetracarboxylic dianhydride on Ag(111) surface excited by tunneling electrons in scanning tunneling microscopy.
    Ino D; Yamada T; Kawai M
    J Chem Phys; 2008 Jul; 129(1):014701. PubMed ID: 18624490
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the Fano Line Shape of Single Molecule Electroluminescence Induced by a Scanning Tunneling Microscope.
    Nian LL; Wang Y; Lü JT
    Nano Lett; 2018 Nov; 18(11):6826-6831. PubMed ID: 30335393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.