BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34076658)

  • 1. Revealing practical specific capacity and carbonyl utilization of multi-carbonyl compounds for organic cathode materials.
    Shi JL; Xiang SQ; Su DJ; He R; Zhao LB
    Phys Chem Chem Phys; 2021 Jun; 23(23):13159-13169. PubMed ID: 34076658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Self-Polymerized Nitro-Substituted Conjugated Carbonyl Compound as High-Performance Cathode for Lithium-Organic Batteries.
    Li Q; Wang H; Wang HG; Si Z; Li C; Bai J
    ChemSusChem; 2020 May; 13(9):2449-2456. PubMed ID: 31867898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A density functional theory study on the thermodynamic and dynamic properties of anthraquinone analogue cathode materials for rechargeable lithium ion batteries.
    Yang SJ; Qin XY; He R; Shen W; Li M; Zhao LB
    Phys Chem Chem Phys; 2017 May; 19(19):12480-12489. PubMed ID: 28470283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries.
    Zhao Q; Zhu Z; Chen J
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28370809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulating Electrostatic Interaction between Hydrofluoroethers and Carbonyl Cathodes toward Highly Stable Lithium-Organic Batteries.
    Lu Y; Yang Z; Zhang Q; Xie W; Chen J
    J Am Chem Soc; 2024 Jan; 146(1):1100-1108. PubMed ID: 38127285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A carbonyl-rich conjugated organic compound for aqueous rechargeable Na
    Jing R; Yang J; Zhao X; Wang Y; Shao P; Shi M; Yan C
    J Colloid Interface Sci; 2024 Mar; 658():678-687. PubMed ID: 38134676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing Extended π-Conjugated Molecules with
    Chen Z; Wang J; Cai T; Hu Z; Chu J; Wang F; Gan X; Song Z
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):27994-28003. PubMed ID: 35695375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbonyl-Based π-Conjugated Materials: From Synthesis to Applications in Lithium-Ion Batteries.
    Oubaha H; Gohy JF; Melinte S
    Chempluschem; 2019 Sep; 84(9):1179-1214. PubMed ID: 31944053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity.
    Nokami T; Matsuo T; Inatomi Y; Hojo N; Tsukagoshi T; Yoshizawa H; Shimizu A; Kuramoto H; Komae K; Tsuyama H; Yoshida J
    J Am Chem Soc; 2012 Dec; 134(48):19694-700. PubMed ID: 23130634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Design of Phenanthrenequinone Derivatives as Organic Cathode Materials.
    Zhao LB; Gao ST; He R; Shen W; Li M
    ChemSusChem; 2018 Apr; 11(7):1215-1222. PubMed ID: 29380541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heteroaromatic organic compound with conjugated multi-carbonyl as cathode material for rechargeable lithium batteries.
    Lv M; Zhang F; Wu Y; Chen M; Yao C; Nan J; Shu D; Zeng R; Zeng H; Chou SL
    Sci Rep; 2016 Apr; 6():23515. PubMed ID: 27064938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Molecular Design of Redox-Active Carbonyl-Bridged Heterotriangulenes for High-Performance Lithium-Ion Batteries.
    Shu X; Hu L; Heine T; Jing Y
    Adv Sci (Weinh); 2024 Feb; 11(6):e2306680. PubMed ID: 38044304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conjugated Carbonyl Polymer-Based Flexible Cathode for Superior Lithium-Organic Batteries.
    Li Q; Li D; Wang H; Wang HG; Li Y; Si Z; Duan Q
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):28801-28808. PubMed ID: 31313916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Dimensional (2D) Covalent Organic Framework as Efficient Cathode for Binder-free Lithium-Ion Battery.
    Yao CJ; Wu Z; Xie J; Yu F; Guo W; Xu ZJ; Li DS; Zhang S; Zhang Q
    ChemSusChem; 2020 May; 13(9):2457-2463. PubMed ID: 31782976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Insoluble Benzoquinone-Based Organic Cathode for Use in Rechargeable Lithium-Ion Batteries.
    Luo Z; Liu L; Zhao Q; Li F; Chen J
    Angew Chem Int Ed Engl; 2017 Oct; 56(41):12561-12565. PubMed ID: 28787540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclohexanehexone with Ultrahigh Capacity as Cathode Materials for Lithium-Ion Batteries.
    Lu Y; Hou X; Miao L; Li L; Shi R; Liu L; Chen J
    Angew Chem Int Ed Engl; 2019 May; 58(21):7020-7024. PubMed ID: 30916877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode.
    Guo Z; Ma Y; Dong X; Huang J; Wang Y; Xia Y
    Angew Chem Int Ed Engl; 2018 Sep; 57(36):11737-11741. PubMed ID: 30019809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulating Protons to Tailor the Enol Conversion of Quinone for High-Performance Aqueous Zinc Batteries.
    Cui H; Zhu J; Zhang R; Yang S; Li C; Wang Y; Hou Y; Li Q; Liang G; Zhi C
    J Am Chem Soc; 2024 Jun; 146(22):15393-15402. PubMed ID: 38767283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Design Strategies for Electrochemical Behavior of Aromatic Carbonyl Compounds in Organic and Aqueous Electrolytes.
    Peng H; Yu Q; Wang S; Kim J; Rowan AE; Nanjundan AK; Yamauchi Y; Yu J
    Adv Sci (Weinh); 2019 Sep; 6(17):1900431. PubMed ID: 31508272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.