These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34076714)

  • 61. ARTP/EMS-combined multiple mutagenesis efficiently improved production of raw starch-degrading enzymes in Penicillium oxalicum and characterization of the enzyme-hyperproducing mutant.
    Gu LS; Tan MZ; Li SH; Zhang T; Zhang QQ; Li CX; Luo XM; Feng JX; Zhao S
    Biotechnol Biofuels; 2020 Nov; 13(1):187. PubMed ID: 33292496
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Production of a high-efficiency cellulase complex via β-glucosidase engineering in Penicillium oxalicum.
    Yao G; Wu R; Kan Q; Gao L; Liu M; Yang P; Du J; Li Z; Qu Y
    Biotechnol Biofuels; 2016; 9():78. PubMed ID: 27034716
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Gene Regulatory Networks of
    Lenz AR; Galán-Vásquez E; Balbinot E; de Abreu FP; Souza de Oliveira N; da Rosa LO; de Avila E Silva S; Camassola M; Dillon AJP; Perez-Rueda E
    Front Microbiol; 2020; 11():588263. PubMed ID: 33193246
    [No Abstract]   [Full Text] [Related]  

  • 64. Cellodextrin transporters play important roles in cellulase induction in the cellulolytic fungus Penicillium oxalicum.
    Li J; Liu G; Chen M; Li Z; Qin Y; Qu Y
    Appl Microbiol Biotechnol; 2013 Dec; 97(24):10479-88. PubMed ID: 24132667
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Deletion of ligD significantly improves gene targeting frequency in the lignocellulolytic filamentous fungus Penicillium oxalicum.
    Qin X; Li R; Luo X; Lin Y; Feng JX
    Fungal Biol; 2017; 121(6-7):615-623. PubMed ID: 28606356
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Proteomic analysis of the biomass hydrolytic potentials of Penicillium oxalicum lignocellulolytic enzyme system.
    Song W; Han X; Qian Y; Liu G; Yao G; Zhong Y; Qu Y
    Biotechnol Biofuels; 2016; 9():68. PubMed ID: 26997974
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Penicillium subrubescens adapts its enzyme production to the composition of plant biomass.
    Dilokpimol A; Peng M; Di Falco M; Chin A Woeng T; Hegi RMW; Granchi Z; Tsang A; Hildén KS; Mäkelä MR; de Vries RP
    Bioresour Technol; 2020 Sep; 311():123477. PubMed ID: 32408196
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Expression-based clustering of CAZyme-encoding genes of Aspergillus niger.
    Gruben BS; Mäkelä MR; Kowalczyk JE; Zhou M; Benoit-Gelber I; De Vries RP
    BMC Genomics; 2017 Nov; 18(1):900. PubMed ID: 29169319
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effect of a heterotrimeric G protein alpha subunit on conidia germination, stress response, and roquefortine C production in Penicillium roqueforti.
    García-Rico RO; Chávez R; Fierro F; Martín JF
    Int Microbiol; 2009 Jun; 12(2):123-9. PubMed ID: 19784932
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus.
    Wu VW; Thieme N; Huberman LB; Dietschmann A; Kowbel DJ; Lee J; Calhoun S; Singan VR; Lipzen A; Xiong Y; Monti R; Blow MJ; O'Malley RC; Grigoriev IV; Benz JP; Glass NL
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):6003-6013. PubMed ID: 32111691
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Identification and characterization of an acidic and acid-stable endoxyloglucanase from Penicillium oxalicum.
    Xian L; Wang F; Yin X; Feng JX
    Int J Biol Macromol; 2016 May; 86():512-8. PubMed ID: 26840178
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Progress in the production of lignocellulolytic enzyme systems using Penicillium species].
    Liu G; Gao L; Qu Y
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):1058-1069. PubMed ID: 33783168
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei.
    Foreman PK; Brown D; Dankmeyer L; Dean R; Diener S; Dunn-Coleman NS; Goedegebuur F; Houfek TD; England GJ; Kelley AS; Meerman HJ; Mitchell T; Mitchinson C; Olivares HA; Teunissen PJ; Yao J; Ward M
    J Biol Chem; 2003 Aug; 278(34):31988-97. PubMed ID: 12788920
    [TBL] [Abstract][Full Text] [Related]  

  • 74. PdSNF1, a sucrose non-fermenting protein kinase gene, is required for Penicillium digitatum conidiation and virulence.
    Zhang T; Sun X; Xu Q; Zhu C; Li Q; Li H
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5433-45. PubMed ID: 23296496
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Transcription analysis of lignocellulolytic enzymes of Penicillium decumbens 114-2 and its catabolite-repression-resistant mutant.
    Wei X; Zheng K; Chen M; Liu G; Li J; Lei Y; Qin Y; Qu Y
    C R Biol; 2011 Nov; 334(11):806-11. PubMed ID: 22078737
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway.
    Hicks JK; Yu JH; Keller NP; Adams TH
    EMBO J; 1997 Aug; 16(16):4916-23. PubMed ID: 9305634
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Diversity of Cellulase-Producing Filamentous Fungi From Tibet and Transcriptomic Analysis of a Superior Cellulase Producer
    Li JX; Zhang F; Jiang DD; Li J; Wang FL; Zhang Z; Wang W; Zhao XQ
    Front Microbiol; 2020; 11():1617. PubMed ID: 32760377
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Proteomic analysis of the signaling pathway mediated by the heterotrimeric Gα protein Pga1 of Penicillium chrysogenum.
    Carrasco-Navarro U; Vera-Estrella R; Barkla BJ; Zúñiga-León E; Reyes-Vivas H; Fernández FJ; Fierro F
    Microb Cell Fact; 2016 Oct; 15(1):173. PubMed ID: 27716202
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Heterotrimeric G protein gamma subunits provide functional selectivity in Gbetagamma dimer signaling in Arabidopsis.
    Trusov Y; Rookes JE; Tilbrook K; Chakravorty D; Mason MG; Anderson D; Chen JG; Jones AM; Botella JR
    Plant Cell; 2007 Apr; 19(4):1235-50. PubMed ID: 17468261
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Selection and molecular characterization of cellulolytic-xylanolytic fungi from surface soil-biomass mixtures from Black Belt sites.
    Okeke BC; Hall RW; Nanjundaswamy A; Thomson MS; Deravi Y; Sawyer L; Prescott A
    Microbiol Res; 2015 Jun; 175():24-33. PubMed ID: 25817459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.