These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34076859)

  • 1. Application of Supervised Machine Learning to Extract Brain Connectivity Information from Neuroscience Research Articles.
    Sharma A; Jayakumar J; Mitra PP; Chakraborti S; Kumar PS
    Interdiscip Sci; 2021 Dec; 13(4):731-750. PubMed ID: 34076859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application and evaluation of automated methods to extract neuroanatomical connectivity statements from free text.
    French L; Lane S; Xu L; Siu C; Kwok C; Chen Y; Krebs C; Pavlidis P
    Bioinformatics; 2012 Nov; 28(22):2963-70. PubMed ID: 22954628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classifying literature mentions of biological pathogens as experimentally studied using natural language processing.
    Jimeno Yepes AJ; Verspoor K
    J Biomed Semantics; 2023 Jan; 14(1):1. PubMed ID: 36721225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Text Mining Pipeline Using Active and Deep Learning Aimed at Curating Information in Computational Neuroscience.
    Shardlow M; Ju M; Li M; O'Reilly C; Iavarone E; McNaught J; Ananiadou S
    Neuroinformatics; 2019 Jul; 17(3):391-406. PubMed ID: 30443819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep semi-supervised learning ensemble framework for classifying co-mentions of human proteins and phenotypes.
    Pourreza Shahri M; Kahanda I
    BMC Bioinformatics; 2021 Oct; 22(1):500. PubMed ID: 34656098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated recognition of brain region mentions in neuroscience literature.
    French L; Lane S; Xu L; Pavlidis P
    Front Neuroinform; 2009; 3():29. PubMed ID: 19750194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale extraction of brain connectivity from the neuroscientific literature.
    Richardet R; Chappelier JC; Telefont M; Hill S
    Bioinformatics; 2015 May; 31(10):1640-7. PubMed ID: 25609795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An annotated dataset for extracting gene-melanoma relations from scientific literature.
    Zanoli R; Lavelli A; Löffler T; Perez Gonzalez NA; Rinaldi F
    J Biomed Semantics; 2022 Jan; 13(1):2. PubMed ID: 35045882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying discourse connectives in biomedical text.
    Ramesh BP; Yu H
    AMIA Annu Symp Proc; 2010 Nov; 2010():657-61. PubMed ID: 21347060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Complete Process of Text Classification System Using State-of-the-Art NLP Models.
    Dogra V; Verma S; Kavita ; Chatterjee P; Shafi J; Choi J; Ijaz MF
    Comput Intell Neurosci; 2022; 2022():1883698. PubMed ID: 35720939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural language processing for cognitive therapy: Extracting schemas from thought records.
    Burger F; Neerincx MA; Brinkman WP
    PLoS One; 2021; 16(10):e0257832. PubMed ID: 34662350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic discourse connective detection in biomedical text.
    Ramesh BP; Prasad R; Miller T; Harrington B; Yu H
    J Am Med Inform Assoc; 2012; 19(5):800-8. PubMed ID: 22744958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Text mining for improved exposure assessment.
    Larsson K; Baker S; Silins I; Guo Y; Stenius U; Korhonen A; Berglund M
    PLoS One; 2017; 12(3):e0173132. PubMed ID: 28257498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BioBERT: a pre-trained biomedical language representation model for biomedical text mining.
    Lee J; Yoon W; Kim S; Kim D; Kim S; So CH; Kang J
    Bioinformatics; 2020 Feb; 36(4):1234-1240. PubMed ID: 31501885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Portable automatic text classification for adverse drug reaction detection via multi-corpus training.
    Sarker A; Gonzalez G
    J Biomed Inform; 2015 Feb; 53():196-207. PubMed ID: 25451103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An annotated corpus with nanomedicine and pharmacokinetic parameters.
    Lewinski NA; Jimenez I; McInnes BT
    Int J Nanomedicine; 2017; 12():7519-7527. PubMed ID: 29066897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical Text Data in Machine Learning: Systematic Review.
    Spasic I; Nenadic G
    JMIR Med Inform; 2020 Mar; 8(3):e17984. PubMed ID: 32229465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning in medicine: a practical introduction to natural language processing.
    Harrison CJ; Sidey-Gibbons CJ
    BMC Med Res Methodol; 2021 Jul; 21(1):158. PubMed ID: 34332525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.