These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 34076860)
1. Adaptive Total-Variation Regularized Low-Rank Representation for Analyzing Single-Cell RNA-seq Data. Liu JX; Wang CY; Gao YL; Zhang Y; Wang J; Li SJ Interdiscip Sci; 2021 Sep; 13(3):476-489. PubMed ID: 34076860 [TBL] [Abstract][Full Text] [Related]
2. A Personalized Low-Rank Subspace Clustering Method Based on Locality and Similarity Constraints for scRNA-seq Data Analysis. Qiao TJ; Liu JX; Shang J; Yuan S; Zheng CH; Wang J IEEE J Biomed Health Inform; 2023 May; 27(5):2575-2584. PubMed ID: 37027680 [TBL] [Abstract][Full Text] [Related]
3. ARGLRR: A Sparse Low-Rank Representation Single-Cell RNA-Sequencing Data Clustering Method Combined with a New Graph Regularization. Wang ZC; Liu JX; Shang JL; Dai LY; Zheng CH; Wang J J Comput Biol; 2023 Aug; 30(8):848-860. PubMed ID: 37471220 [TBL] [Abstract][Full Text] [Related]
4. MLRR-ATV: A Robust Manifold Nonnegative LowRank Representation with Adaptive Total-Variation Regularization for scRNA-seq Data Clustering. Wang GF; Wang J; Yuan S; Zheng CH; Liu JX IEEE/ACM Trans Comput Biol Bioinform; 2024 Jul; PP():. PubMed ID: 39046863 [TBL] [Abstract][Full Text] [Related]
5. JLONMFSC: Clustering scRNA-seq data based on joint learning of non-negative matrix factorization and subspace clustering. Lan W; Liu M; Chen J; Ye J; Zheng R; Zhu X; Peng W Methods; 2024 Feb; 222():1-9. PubMed ID: 38128706 [TBL] [Abstract][Full Text] [Related]
6. Visualization and Analysis of Single Cell RNA-Seq Data by Maximizing Correntropy Based Non-Negative Low Rank Representation. Jiao CN; Liu JX; Wang J; Shang J; Zheng CH IEEE J Biomed Health Inform; 2022 Apr; 26(4):1872-1882. PubMed ID: 34495855 [TBL] [Abstract][Full Text] [Related]
7. Single-Cell RNA Sequencing Data Clustering by Low-Rank Subspace Ensemble Framework. Wang CY; Gao YL; Liu JX; Kong XZ; Zheng CH IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):1154-1164. PubMed ID: 33026977 [TBL] [Abstract][Full Text] [Related]
8. Clustering Single-Cell RNA-Seq Data with Regularized Gaussian Graphical Model. Liu Z Genes (Basel); 2021 Feb; 12(2):. PubMed ID: 33671799 [TBL] [Abstract][Full Text] [Related]
9. SinNLRR: a robust subspace clustering method for cell type detection by non-negative and low-rank representation. Zheng R; Li M; Liang Z; Wu FX; Pan Y; Wang J Bioinformatics; 2019 Oct; 35(19):3642-3650. PubMed ID: 30821315 [TBL] [Abstract][Full Text] [Related]
10. Unsupervised Cluster Analysis and Gene Marker Extraction of scRNA-seq Data Based On Non-Negative Matrix Factorization. Wang CY; Gao YL; Kong XZ; Liu JX; Zheng CH IEEE J Biomed Health Inform; 2022 Jan; 26(1):458-467. PubMed ID: 34156956 [TBL] [Abstract][Full Text] [Related]
11. Non-negative low-rank representation based on dictionary learning for single-cell RNA-sequencing data analysis. Wang J; Zhang N; Yuan S; Shang J; Dai L; Li F; Liu J BMC Genomics; 2022 Dec; 23(1):851. PubMed ID: 36564711 [TBL] [Abstract][Full Text] [Related]
12. NLRRC: A Novel Clustering Method of Jointing Non-Negative LRR and Random Walk Graph Regularized NMF for Single-Cell Type Identification. Wang J; Wang LP; Yuan SS; Li F; Liu JX; Shang JL IEEE J Biomed Health Inform; 2023 Oct; 27(10):5199-5209. PubMed ID: 37506010 [TBL] [Abstract][Full Text] [Related]
13. SCCLRR: A Robust Computational Method for Accurate Clustering Single Cell RNA-Seq Data. Zhang W; Li Y; Zou X IEEE J Biomed Health Inform; 2021 Jan; 25(1):247-256. PubMed ID: 32356764 [TBL] [Abstract][Full Text] [Related]
14. Robust Graph Regularized NMF with Dissimilarity and Similarity Constraints for ScRNA-seq Data Clustering. Shu Z; Long Q; Zhang L; Yu Z; Wu XJ J Chem Inf Model; 2022 Dec; 62(23):6271-6286. PubMed ID: 36459053 [TBL] [Abstract][Full Text] [Related]
15. CBLRR: a cauchy-based bounded constraint low-rank representation method to cluster single-cell RNA-seq data. Ding Q; Yang W; Luo M; Xu C; Xu Z; Pang F; Cai Y; Anashkina AA; Su X; Chen N; Jiang Q Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35870203 [TBL] [Abstract][Full Text] [Related]
16. LRSK: a low-rank self-representation K-means method for clustering single-cell RNA-sequencing data. Sun YS; Ou-Yang L; Dai DQ Mol Omics; 2020 Oct; 16(5):465-473. PubMed ID: 32572422 [TBL] [Abstract][Full Text] [Related]
17. Single-cell RNA-seq data semi-supervised clustering and annotation via structural regularized domain adaptation. Chen L; He Q; Zhai Y; Deng M Bioinformatics; 2021 May; 37(6):775-784. PubMed ID: 33098418 [TBL] [Abstract][Full Text] [Related]
18. SLRRSC: Single-Cell Type Recognition Method Based on Similarity and Graph Regularization Constraints. Zhang NN; Liu JX; Zheng CH; Wang J IEEE J Biomed Health Inform; 2022 Jul; 26(7):3556-3566. PubMed ID: 35120014 [TBL] [Abstract][Full Text] [Related]
19. ScGSLC: An unsupervised graph similarity learning framework for single-cell RNA-seq data clustering. Li J; Jiang W; Han H; Liu J; Liu B; Wang Y Comput Biol Chem; 2021 Feb; 90():107415. PubMed ID: 33307360 [TBL] [Abstract][Full Text] [Related]
20. A spectral clustering with self-weighted multiple kernel learning method for single-cell RNA-seq data. Qi R; Wu J; Guo F; Xu L; Zou Q Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33003206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]