BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 34076932)

  • 1. Novel factors that activate and deactivate cardiac fibroblasts: A new perspective for treatment of cardiac fibrosis.
    de Oliveira Camargo R; Abual'anaz B; Rattan SG; Filomeno KL; Dixon IMC
    Wound Repair Regen; 2021 Jul; 29(4):667-677. PubMed ID: 34076932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ski drives an acute increase in MMP-9 gene expression and release in primary cardiac myofibroblasts.
    Landry N; Kavosh MS; Filomeno KL; Rattan SG; Czubryt MP; Dixon IMC
    Physiol Rep; 2018 Nov; 6(22):e13897. PubMed ID: 30488595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SKI activates the Hippo pathway via LIMD1 to inhibit cardiac fibroblast activation.
    Landry NM; Rattan SG; Filomeno KL; Meier TW; Meier SC; Foran SJ; Meier CF; Koleini N; Fandrich RR; Kardami E; Duhamel TA; Dixon IMC
    Basic Res Cardiol; 2021 Apr; 116(1):25. PubMed ID: 33847835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibroblast mechanosensing, SKI and Hippo signaling and the cardiac fibroblast phenotype: Looking beyond TGF-β.
    Landry NM; Dixon IMC
    Cell Signal; 2020 Dec; 76():109802. PubMed ID: 33017619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Featured Article: TGF-β1 dominates extracellular matrix rigidity for inducing differentiation of human cardiac fibroblasts to myofibroblasts.
    Cho N; Razipour SE; McCain ML
    Exp Biol Med (Maywood); 2018 Apr; 243(7):601-612. PubMed ID: 29504479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Ski-Zeb2-Meox2 pathway provides a novel mechanism for regulation of the cardiac myofibroblast phenotype.
    Cunnington RH; Northcott JM; Ghavami S; Filomeno KL; Jahan F; Kavosh MS; Davies JJ; Wigle JT; Dixon IM
    J Cell Sci; 2014 Jan; 127(Pt 1):40-9. PubMed ID: 24155330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of autophagy inhibits the conversion of cardiac fibroblasts to cardiac myofibroblasts.
    Gupta SS; Zeglinski MR; Rattan SG; Landry NM; Ghavami S; Wigle JT; Klonisch T; Halayko AJ; Dixon IM
    Oncotarget; 2016 Nov; 7(48):78516-78531. PubMed ID: 27705938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac fibrosis.
    Frangogiannis NG
    Cardiovasc Res; 2021 May; 117(6):1450-1488. PubMed ID: 33135058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibroblast-Specific Genetic Manipulation of p38 Mitogen-Activated Protein Kinase In Vivo Reveals Its Central Regulatory Role in Fibrosis.
    Molkentin JD; Bugg D; Ghearing N; Dorn LE; Kim P; Sargent MA; Gunaje J; Otsu K; Davis J
    Circulation; 2017 Aug; 136(6):549-561. PubMed ID: 28356446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protective Effects of Activated Myofibroblasts in the Pressure-Overloaded Myocardium Are Mediated Through Smad-Dependent Activation of a Matrix-Preserving Program.
    Russo I; Cavalera M; Huang S; Su Y; Hanna A; Chen B; Shinde AV; Conway SJ; Graff J; Frangogiannis NG
    Circ Res; 2019 Apr; 124(8):1214-1227. PubMed ID: 30686120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical stress regulates the mechanotransduction and metabolism of cardiac fibroblasts in fibrotic cardiac diseases.
    Tian G; Ren T
    Eur J Cell Biol; 2023 Jun; 102(2):151288. PubMed ID: 36696810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signaling mechanisms regulating fibroblast activation, phenoconversion and fibrosis in the heart.
    MacLean J; Pasumarthi KB
    Indian J Biochem Biophys; 2014 Dec; 51(6):476-82. PubMed ID: 25823219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Piezo1 Channel as a Potential Target for Hindering Cardiac Fibrotic Remodeling.
    Braidotti N; Chen SN; Long CS; Cojoc D; Sbaizero O
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient receptor potential (TRP) channels and cardiac fibrosis.
    Yue Z; Zhang Y; Xie J; Jiang J; Yue L
    Curr Top Med Chem; 2013; 13(3):270-82. PubMed ID: 23432060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sirtuin 6 deficiency transcriptionally up-regulates TGF-β signaling and induces fibrosis in mice.
    Maity S; Muhamed J; Sarikhani M; Kumar S; Ahamed F; Spurthi KM; Ravi V; Jain A; Khan D; Arathi BP; Desingu PA; Sundaresan NR
    J Biol Chem; 2020 Jan; 295(2):415-434. PubMed ID: 31744885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The transcription factor scleraxis is a critical regulator of cardiac fibroblast phenotype.
    Bagchi RA; Roche P; Aroutiounova N; Espira L; Abrenica B; Schweitzer R; Czubryt MP
    BMC Biol; 2016 Mar; 14():21. PubMed ID: 26988708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myocardial fibroblast-matrix interactions and potential therapeutic targets.
    Goldsmith EC; Bradshaw AD; Zile MR; Spinale FG
    J Mol Cell Cardiol; 2014 May; 70():92-9. PubMed ID: 24472826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced
    Bracco Gartner TCL; Stein JM; Muylaert DEP; Bouten CVC; Doevendans PA; Khademhosseini A; Suyker WJL; Sluijter JPG; Hjortnaes J
    Tissue Eng Part C Methods; 2021 Feb; 27(2):100-114. PubMed ID: 33407000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of cardiac fibroblasts in post-myocardial heart tissue repair.
    Chistiakov DA; Orekhov AN; Bobryshev YV
    Exp Mol Pathol; 2016 Oct; 101(2):231-240. PubMed ID: 27619160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TGFβ1 regulates Scleraxis expression in primary cardiac myofibroblasts by a Smad-independent mechanism.
    Zeglinski MR; Roche P; Hnatowich M; Jassal DS; Wigle JT; Czubryt MP; Dixon IM
    Am J Physiol Heart Circ Physiol; 2016 Jan; 310(2):H239-49. PubMed ID: 26566727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.