These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 34077179)
1. Dual Adaptation of a Flexible Shape Memory Polymer Adhesive. Son C; Kim S ACS Appl Mater Interfaces; 2021 Jun; 13(23):27656-27662. PubMed ID: 34077179 [TBL] [Abstract][Full Text] [Related]
2. Overcoming the adhesion paradox and switchability conflict on rough surfaces with shape-memory polymers. Linghu C; Liu Y; Tan YY; Sing JHM; Tang Y; Zhou A; Wang X; Li D; Gao H; Hsia KJ Proc Natl Acad Sci U S A; 2023 Mar; 120(13):e2221049120. PubMed ID: 36940332 [TBL] [Abstract][Full Text] [Related]
3. A Photocured Bio-based Shape Memory Thermoplastics for Reversible Wet Adhesion. Wu Y; Su C; Wang S; Zheng B; Mahjoubnia A; Sattari K; Zhang H; Meister J; Huang G; Lin J Chem Eng J; 2023 Aug; 470():. PubMed ID: 37484781 [TBL] [Abstract][Full Text] [Related]
4. Microstructured shape memory polymer surfaces with reversible dry adhesion. Eisenhaure JD; Xie T; Varghese S; Kim S ACS Appl Mater Interfaces; 2013 Aug; 5(16):7714-7. PubMed ID: 23945078 [TBL] [Abstract][Full Text] [Related]
5. Triple-Bioinspired Shape Memory Microcavities with Strong and Switchable Adhesion. Li Y; Liu X; Wang R; Jiao S; Liu Y; Lai H; Cheng Z ACS Nano; 2023 Dec; 17(23):23595-23607. PubMed ID: 37983013 [TBL] [Abstract][Full Text] [Related]
6. Surface Adaptable and Adhesion Controllable Dry Adhesive with Shape Memory Polymer. Lee SH; Song HW; Park HJ; Kwak MK Macromol Rapid Commun; 2022 Apr; 43(8):e2200012. PubMed ID: 35132723 [TBL] [Abstract][Full Text] [Related]
7. Restoration Temperature Control through Glass Transition Temperature Modulation of Shape Memory Polymer for Thermally Switchable Adhesive. Park HJ; Kim M; Lee J; Kwak MK Adv Sci (Weinh); 2024 Jul; 11(26):e2309393. PubMed ID: 38704689 [TBL] [Abstract][Full Text] [Related]
8. Switchable Adhesion of Micropillar Adhesive on Rough Surfaces. Tan D; Wang X; Liu Q; Shi K; Yang B; Liu S; Wu ZS; Xue L Small; 2019 Dec; 15(50):e1904248. PubMed ID: 31724823 [TBL] [Abstract][Full Text] [Related]
9. Octopus-Inspired Adhesives with Switchable Attachment to Challenging Underwater Surfaces. Lee C; Via AC; Heredia A; Adjei DA; Bartlett MD Adv Sci (Weinh); 2024 Oct; ():e2407588. PubMed ID: 39380495 [TBL] [Abstract][Full Text] [Related]
10. Fibrillar adhesives with unprecedented adhesion strength, switchability and scalability. Linghu C; Liu Y; Yang X; Li D; Tan YY; Mohamed Hafiz MHB; Rohani MFB; Du Z; Su J; Li Y; Huo Y; Xu H; Wang X; Wang Y; Yu J; Gao H; Hsia KJ Natl Sci Rev; 2024 Oct; 11(10):nwae106. PubMed ID: 39309978 [TBL] [Abstract][Full Text] [Related]
11. Versatile Adhesion-Based Gripping via an Unstructured Variable Stiffness Membrane. Luo A; Pande SS; Turner KT Soft Robot; 2022 Dec; 9(6):1177-1185. PubMed ID: 35834559 [TBL] [Abstract][Full Text] [Related]
12. Recent Progress on the Use of Stimulus-Responsive Materials for Dry Adhesive Applications. Hassani HTM; Baji A ACS Appl Bio Mater; 2023 Oct; 6(10):4002-4019. PubMed ID: 37795994 [TBL] [Abstract][Full Text] [Related]
13. Lower Critical Solution Temperature-Driven Self-Coacervation of Nonionic Polyester Underwater Adhesives. Narayanan A; Menefee JR; Liu Q; Dhinojwala A; Joy A ACS Nano; 2020 Jul; 14(7):8359-8367. PubMed ID: 32538616 [TBL] [Abstract][Full Text] [Related]
14. A Pressure-Insensitive Self-Attachable Flexible Strain Sensor with Bioinspired Adhesive and Active CNT Layers. Seong M; Hwang I; Lee J; Jeong HE Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33291510 [TBL] [Abstract][Full Text] [Related]
15. Roughness tolerant pressure sensitive adhesives made of sticky crumpled sheets. Elder T; Croll AB Soft Matter; 2022 Oct; 18(40):7866-7876. PubMed ID: 36205147 [TBL] [Abstract][Full Text] [Related]
16. Bioinspired reversible hydrogel adhesives for wet and underwater surfaces. Yi H; Lee SH; Seong M; Kwak MK; Jeong HE J Mater Chem B; 2018 Dec; 6(48):8064-8070. PubMed ID: 32254925 [TBL] [Abstract][Full Text] [Related]
17. Scalable Underwater Adhesives with High-Strength, Long-Term, and Harsh-Environment Adhesion Enabled by Heterocyclic Chemistry. Li F; Gu W; Gao Q; Tan Y; Li C; Sonne C; Li J; Kim KH ACS Appl Mater Interfaces; 2023 Aug; 15(31):37925-37935. PubMed ID: 37493476 [TBL] [Abstract][Full Text] [Related]
18. Optimizing Adhesive Design by Understanding Compliance. King DR; Crosby AJ ACS Appl Mater Interfaces; 2015 Dec; 7(50):27771-81. PubMed ID: 26618537 [TBL] [Abstract][Full Text] [Related]
19. Touch initiated on-demand adhesion on rough surfaces. Shi Z; Tan D; Xiao K; Zhang X; Zhu B; Lin Z; Liu Q; Chen D; Zhang Q; Xue L Mater Horiz; 2024 Jul; 11(15):3539-3547. PubMed ID: 38932648 [TBL] [Abstract][Full Text] [Related]
20. A bioinspired elastin-based protein for a cytocompatible underwater adhesive. Brennan MJ; Kilbride BF; Wilker JJ; Liu JC Biomaterials; 2017 Apr; 124():116-125. PubMed ID: 28192773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]