BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 34077259)

  • 1. Inhibition of Three Potato Pathogens by Phenazine-Producing
    Biessy A; Novinscak A; St-Onge R; Léger G; Zboralski A; Filion M
    mSphere; 2021 Jun; 6(3):e0042721. PubMed ID: 34077259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic and Genomic Traits of Phytobeneficial Phenazine-Producing
    Zboralski A; Biessy A; Savoie MC; Novinscak A; Filion M
    Appl Environ Microbiol; 2020 Feb; 86(4):. PubMed ID: 31811040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pan-genome analysis identifies intersecting roles for
    Pacheco-Moreno A; Stefanato FL; Ford JJ; Trippel C; Uszkoreit S; Ferrafiat L; Grenga L; Dickens R; Kelly N; Kingdon AD; Ambrosetti L; Nepogodiev SA; Findlay KC; Cheema J; Trick M; Chandra G; Tomalin G; Malone JG; Truman AW
    Elife; 2021 Dec; 10():. PubMed ID: 34792466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenazine-1-Carboxylic Acid Production by Pseudomonas fluorescens LBUM636 Alters Phytophthora infestans Growth and Late Blight Development.
    Morrison CK; Arseneault T; Novinscak A; Filion M
    Phytopathology; 2017 Mar; 107(3):273-279. PubMed ID: 27827009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Tuber Biocontrol of Potato Late Blight by a Collection of Phenazine-1-Carboxylic Acid-Producing
    Léger G; Novinscak A; Biessy A; Lamarre S; Filion M
    Microorganisms; 2021 Dec; 9(12):. PubMed ID: 34946127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains.
    Chin-A-Woeng TF; Thomas-Oates JE; Lugtenberg BJ; Bloemberg GV
    Mol Plant Microbe Interact; 2001 Aug; 14(8):1006-15. PubMed ID: 11497461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome alteration in Phytophthora infestans in response to phenazine-1-carboxylic acid production by Pseudomonas fluorescens strain LBUM223.
    Roquigny R; Novinscak A; Arseneault T; Joly DL; Filion M
    BMC Genomics; 2018 Jun; 19(1):474. PubMed ID: 29914352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of biological control and mechanisms of Pseudomonas chlororaphis zm-1 against peanut stem rot.
    Liu F; Yang S; Xu F; Zhang Z; Lu Y; Zhang J; Wang G
    BMC Microbiol; 2022 Jan; 22(1):9. PubMed ID: 34986788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ability of Pseudomonas sp. LBUM 223 to produce phenazine-1-carboxylic acid affects the growth of Streptomyces scabies, the expression of thaxtomin biosynthesis genes and the biological control potential against common scab of potato.
    St-Onge R; Gadkar VJ; Arseneault T; Goyer C; Filion M
    FEMS Microbiol Ecol; 2011 Jan; 75(1):173-83. PubMed ID: 21073487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenazines in plant-beneficial Pseudomonas spp.: biosynthesis, regulation, function and genomics.
    Biessy A; Filion M
    Environ Microbiol; 2018 Nov; 20(11):3905-3917. PubMed ID: 30159978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocontrol of Potato Common Scab is Associated with High Pseudomonas fluorescens LBUM223 Populations and Phenazine-1-Carboxylic Acid Biosynthetic Transcript Accumulation in the Potato Geocaulosphere.
    Arseneault T; Goyer C; Filion M
    Phytopathology; 2016 Sep; 106(9):963-70. PubMed ID: 27088392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity of phytobeneficial traits revealed by whole-genome analysis of worldwide-isolated phenazine-producing Pseudomonas spp.
    Biessy A; Novinscak A; Blom J; Léger G; Thomashow LS; Cazorla FM; Josic D; Filion M
    Environ Microbiol; 2019 Jan; 21(1):437-455. PubMed ID: 30421490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities.
    Jain R; Pandey A
    Microbiol Res; 2016 Sep; 190():63-71. PubMed ID: 27394000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae Kleb.
    Berg G; Fritze A; Roskot N; Smalla K
    J Appl Microbiol; 2001 Dec; 91(6):963-71. PubMed ID: 11851803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans.
    Hunziker L; Bönisch D; Groenhagen U; Bailly A; Schulz S; Weisskopf L
    Appl Environ Microbiol; 2015 Feb; 81(3):821-30. PubMed ID: 25398872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Population structure and diversity of phenazine-1-carboxylic acid producing fluorescent Pseudomonas spp. from dryland cereal fields of central Washington State (USA).
    Parejko JA; Mavrodi DV; Mavrodi OV; Weller DM; Thomashow LS
    Microb Ecol; 2012 Jul; 64(1):226-41. PubMed ID: 22383119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome shuffling enhances biocontrol abilities of Streptomyces strains against two potato pathogens.
    Clermont N; Lerat S; Beaulieu C
    J Appl Microbiol; 2011 Sep; 111(3):671-82. PubMed ID: 21672101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of spontaneous mutations on physiological traits and biocontrol activity of Pseudomonas chlororaphis M71.
    Raio A; Brilli F; Baraldi R; Neri L; Puopolo G
    Microbiol Res; 2020 Oct; 239():126517. PubMed ID: 32535393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indigenous
    Gómez-Lama Cabanás C; Legarda G; Ruano-Rosa D; Pizarro-Tobías P; Valverde-Corredor A; Niqui JL; Triviño JC; Roca A; Mercado-Blanco J
    Front Microbiol; 2018; 9():277. PubMed ID: 29527195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of phenazine-1-carboxamide production by quorum sensing in type strains of Pseudomonas chlororaphis subsp. chlororaphis and Pseudomonas chlororaphis subsp. piscium.
    Morohoshi T; Yabe N; Yaguchi N; Xie X; Someya N
    J Biosci Bioeng; 2022 Jun; 133(6):541-546. PubMed ID: 35365429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.