These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 34077267)
21. Symbiotic compatibility between rice cultivars and arbuscular mycorrhizal fungi genotypes affects rice growth and mycorrhiza-induced resistance. Guigard L; Jobert L; Busset N; Moulin L; Czernic P Front Plant Sci; 2023; 14():1278990. PubMed ID: 37941658 [TBL] [Abstract][Full Text] [Related]
22. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis. Handa Y; Nishide H; Takeda N; Suzuki Y; Kawaguchi M; Saito K Plant Cell Physiol; 2015 Aug; 56(8):1490-511. PubMed ID: 26009592 [TBL] [Abstract][Full Text] [Related]
23. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis. Abdallah C; Valot B; Guillier C; Mounier A; Balliau T; Zivy M; van Tuinen D; Renaut J; Wipf D; Dumas-Gaudot E; Recorbet G J Proteomics; 2014 Aug; 108():354-68. PubMed ID: 24925269 [TBL] [Abstract][Full Text] [Related]
24. Symbiosis of isoetid plant species with arbuscular mycorrhizal fungi under aquatic versus terrestrial conditions. Sudová R; Rydlová J; Čtvrtlíková M; Kohout P; Oehl F; Voříšková J; Kolaříková Z Mycorrhiza; 2021 May; 31(3):273-288. PubMed ID: 33486575 [TBL] [Abstract][Full Text] [Related]
25. Dysfunction in the arbuscular mycorrhizal symbiosis has consistent but small effects on the establishment of the fungal microbiota in Lotus japonicus. Xue L; Almario J; Fabiańska I; Saridis G; Bucher M New Phytol; 2019 Oct; 224(1):409-420. PubMed ID: 31125425 [TBL] [Abstract][Full Text] [Related]
26. Lipid droplets of arbuscular mycorrhizal fungi emerge in concert with arbuscule collapse. Kobae Y; Gutjahr C; Paszkowski U; Kojima T; Fujiwara T; Hata S Plant Cell Physiol; 2014 Nov; 55(11):1945-53. PubMed ID: 25231957 [TBL] [Abstract][Full Text] [Related]
27. Shedding light onto nutrient responses of arbuscular mycorrhizal plants: nutrient interactions may lead to unpredicted outcomes of the symbiosis. Corrêa A; Cruz C; Pérez-Tienda J; Ferrol N Plant Sci; 2014 May; 221-222():29-41. PubMed ID: 24656333 [TBL] [Abstract][Full Text] [Related]
28. Glomus intraradices induces changes in root system architecture of rice independently of common symbiosis signaling. Gutjahr C; Casieri L; Paszkowski U New Phytol; 2009 Jun; 182(4):829-837. PubMed ID: 19383099 [TBL] [Abstract][Full Text] [Related]
29. Arbuscular Mycorrhizal Fungal 14-3-3 Proteins Are Involved in Arbuscule Formation and Responses to Abiotic Stresses During AM Symbiosis. Sun Z; Song J; Xin X; Xie X; Zhao B Front Microbiol; 2018; 9():91. PubMed ID: 29556216 [TBL] [Abstract][Full Text] [Related]
30. Initiation of arbuscular mycorrhizal symbiosis involves a novel pathway independent from hyphal branching. Taulera Q; Lauressergues D; Martin K; Cadoret M; Servajean V; Boyer FD; Rochange S Mycorrhiza; 2020 Jul; 30(4):491-501. PubMed ID: 32506172 [TBL] [Abstract][Full Text] [Related]
31. Different levels of hyphal self-incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae. Pepe A; Giovannetti M; Sbrana C Mycorrhiza; 2016 May; 26(4):325-32. PubMed ID: 26630971 [TBL] [Abstract][Full Text] [Related]
32. In Vivo Modulation of Arbuscular Mycorrhizal Symbiosis and Soil Quality by Fungal P Solubilizers. Della Mónica IF; Godeas AM; Scervino JM Microb Ecol; 2020 Jan; 79(1):21-29. PubMed ID: 31218384 [TBL] [Abstract][Full Text] [Related]
33. The effector candidate repertoire of the arbuscular mycorrhizal fungus Rhizophagus clarus. Sędzielewska Toro K; Brachmann A BMC Genomics; 2016 Feb; 17():101. PubMed ID: 26861502 [TBL] [Abstract][Full Text] [Related]
34. Conserved Proteins of the RNA Interference System in the Arbuscular Mycorrhizal Fungus Rhizoglomus irregulare Provide New Insight into the Evolutionary History of Glomeromycota. Lee SJ; Kong M; Harrison P; Hijri M Genome Biol Evol; 2018 Jan; 10(1):328-343. PubMed ID: 29329439 [TBL] [Abstract][Full Text] [Related]
35. Natural variation at OsCERK1 regulates arbuscular mycorrhizal symbiosis in rice. Huang R; Li Z; Mao C; Zhang H; Sun Z; Li H; Huang C; Feng Y; Shen X; Bucher M; Zhang Z; Lin Y; Cao Y; Duanmu D New Phytol; 2020 Feb; 225(4):1762-1776. PubMed ID: 31484206 [TBL] [Abstract][Full Text] [Related]
36. Systematic analysis of the Rboh gene family in seven gramineous plants and its roles in response to arbuscular mycorrhizal fungi in maize. Wu F; Zhao M; Zhang Y; Si W; Cheng B; Li X BMC Plant Biol; 2023 Nov; 23(1):603. PubMed ID: 38030972 [TBL] [Abstract][Full Text] [Related]
37. Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. Kobae Y; Hata S Plant Cell Physiol; 2010 Mar; 51(3):341-53. PubMed ID: 20097910 [TBL] [Abstract][Full Text] [Related]
38. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. Wipf D; Krajinski F; van Tuinen D; Recorbet G; Courty PE New Phytol; 2019 Aug; 223(3):1127-1142. PubMed ID: 30843207 [TBL] [Abstract][Full Text] [Related]
39. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Tisserant E; Malbreil M; Kuo A; Kohler A; Symeonidi A; Balestrini R; Charron P; Duensing N; Frei dit Frey N; Gianinazzi-Pearson V; Gilbert LB; Handa Y; Herr JR; Hijri M; Koul R; Kawaguchi M; Krajinski F; Lammers PJ; Masclaux FG; Murat C; Morin E; Ndikumana S; Pagni M; Petitpierre D; Requena N; Rosikiewicz P; Riley R; Saito K; San Clemente H; Shapiro H; van Tuinen D; Bécard G; Bonfante P; Paszkowski U; Shachar-Hill YY; Tuskan GA; Young JP; Sanders IR; Henrissat B; Rensing SA; Grigoriev IV; Corradi N; Roux C; Martin F Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20117-22. PubMed ID: 24277808 [TBL] [Abstract][Full Text] [Related]