These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3407760)

  • 1. G-1,6-P2 in human skeletal muscle after isometric contraction.
    Katz A; Lee AD
    Am J Physiol; 1988 Aug; 255(2 Pt 1):C145-8. PubMed ID: 3407760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. G-1,6-P2, glycolysis, and energy metabolism during circulatory occlusion in human skeletal muscle.
    Katz A
    Am J Physiol; 1988 Aug; 255(2 Pt 1):C140-4. PubMed ID: 3407759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbohydrate metabolism in human skeletal muscle during exercise is not regulated by G-1,6-P2.
    Katz A; Sahlin K; Henriksson J
    J Appl Physiol (1985); 1988 Jul; 65(1):487-9. PubMed ID: 2969883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle ATP turnover rate during isometric contraction in humans.
    Katz A; Sahlin K; Henriksson J
    J Appl Physiol (1985); 1986 Jun; 60(6):1839-42. PubMed ID: 3722052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient increase in glucose 1,6-bisphosphate in human skeletal muscle during isometric contraction.
    Lee AD; Katz A
    Biochem J; 1989 Mar; 258(3):915-8. PubMed ID: 2730576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of glucose utilization in human skeletal muscle during moderate dynamic exercise.
    Katz A; Sahlin K; Broberg S
    Am J Physiol; 1991 Mar; 260(3 Pt 1):E411-5. PubMed ID: 2003594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle ammonia metabolism during isometric contraction in humans.
    Katz A; Sahlin K; Henriksson J
    Am J Physiol; 1986 Jun; 250(6 Pt 1):C834-40. PubMed ID: 2872818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between carbohydrate oxidation and G-1,6-P2 in human skeletal muscle during euglycemic hyperinsulinemia.
    Katz A; Bogardus C
    Am J Physiol; 1991 Jan; 260(1 Pt 2):R113-9. PubMed ID: 1825156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP utilization and provision in fast-twitch skeletal muscle during tetanic contractions.
    Spriet LL
    Am J Physiol; 1989 Oct; 257(4 Pt 1):E595-605. PubMed ID: 2801938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oscillatory synthesis of glucose 1,6-bisphosphate and frequency modulation of glycolytic oscillations in skeletal muscle extracts.
    Andrés V; Schultz V; Tornheim K
    J Biol Chem; 1990 Dec; 265(35):21441-7. PubMed ID: 2254306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox state changes in human skeletal muscle after isometric contraction.
    Henriksson J; Katz A; Sahlin K
    J Physiol; 1986 Nov; 380():441-51. PubMed ID: 3612570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of fatigable and fatigue-resistant fibres of rabbit muscle to low-frequency stimulation.
    Cadefau JA; Parra J; Cussó R; Heine G; Pette D
    Pflugers Arch; 1993 Sep; 424(5-6):529-37. PubMed ID: 8255737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of hypoxia on glucose metabolism in human skeletal muscle during exercise.
    Katz A; Sahlin K
    Acta Physiol Scand; 1989 Jul; 136(3):377-82. PubMed ID: 2750538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycolytic intermediates in human muscle after isometric contraction.
    Harris RC; Hultman E; Sahlin K
    Pflugers Arch; 1981 Mar; 389(3):277-82. PubMed ID: 7195012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy metabolism and contraction force of human skeletal muscle in situ during electrical stimulation.
    Hultman E; Sjöholm H
    J Physiol; 1983 Dec; 345():525-32. PubMed ID: 6663511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in glucose 1,6-bisphosphate content in rat skeletal muscle during contraction.
    Bassols AM; Carreras J; Cussó R
    Biochem J; 1986 Dec; 240(3):747-51. PubMed ID: 3827864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic ATP provision, glycogenolysis and glycolysis in rat slow-twitch muscle during tetanic contractions.
    Spriet LL
    Pflugers Arch; 1990 Nov; 417(3):278-84. PubMed ID: 2148818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of glycogen in control of glycolysis and IMP formation in human muscle during exercise.
    Spencer MK; Katz A
    Am J Physiol; 1991 Jun; 260(6 Pt 1):E859-64. PubMed ID: 2058662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy cost and metabolic regulation during intermittent and continuous tetanic contractions in human skeletal muscle.
    Spriet LL; Soderlund K; Hultman E
    Can J Physiol Pharmacol; 1988 Feb; 66(2):134-9. PubMed ID: 3370544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increase in glucose 1,6-bisphosphate levels, activation of phosphofructokinase and phosphoglucomutase, and inhibition of glucose 1,6-bisphosphatase in muscle induced by trifluoperazine.
    Frucht H; Kaplansky M; Beitner R
    Biochem Med; 1984 Feb; 31(1):122-9. PubMed ID: 6331422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.