BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

570 related articles for article (PubMed ID: 34077734)

  • 1. Targeted delivery of CRISPR-Cas9 and transgenes enables complex immune cell engineering.
    Hamilton JR; Tsuchida CA; Nguyen DN; Shy BR; McGarrigle ER; Sandoval Espinoza CR; Carr D; Blaeschke F; Marson A; Doudna JA
    Cell Rep; 2021 Jun; 35(9):109207. PubMed ID: 34077734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Cas9 Ribonucleoprotein Platform for Functional Genetic Studies of HIV-Host Interactions in Primary Human T Cells.
    Hultquist JF; Schumann K; Woo JM; Manganaro L; McGregor MJ; Doudna J; Simon V; Krogan NJ; Marson A
    Cell Rep; 2016 Oct; 17(5):1438-1452. PubMed ID: 27783955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing.
    Dimitri A; Herbst F; Fraietta JA
    Mol Cancer; 2022 Mar; 21(1):78. PubMed ID: 35303871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome editing in the mouse brain with minimally immunogenic Cas9 RNPs.
    Stahl EC; Sabo JK; Kang MH; Allen R; Applegate E; Kim SE; Kwon Y; Seth A; Lemus N; Salinas-Rios V; Soczek KM; Trinidad M; Vo LT; Jeans C; Wozniak A; Morris T; Kimberlin A; Foti T; Savage DF; Doudna JA
    Mol Ther; 2023 Aug; 31(8):2422-2438. PubMed ID: 37403358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9; A robust technology for producing genetically engineered plants.
    Farooq R; Hussain K; Nazir S; Javed MR; Masood N
    Cell Mol Biol (Noisy-le-grand); 2018 Nov; 64(14):31-38. PubMed ID: 30511631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome modification of CXCR4 by Staphylococcus aureus Cas9 renders cells resistance to HIV-1 infection.
    Wang Q; Chen S; Xiao Q; Liu Z; Liu S; Hou P; Zhou L; Hou W; Ho W; Li C; Wu L; Guo D
    Retrovirology; 2017 Nov; 14(1):51. PubMed ID: 29141633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elimination of HIV-1 Genomes from Human T-lymphoid Cells by CRISPR/Cas9 Gene Editing.
    Kaminski R; Chen Y; Fischer T; Tedaldi E; Napoli A; Zhang Y; Karn J; Hu W; Khalili K
    Sci Rep; 2016 Mar; 6():22555. PubMed ID: 26939770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives.
    Dong W; Kantor B
    Viruses; 2021 Jul; 13(7):. PubMed ID: 34372494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing.
    Wei T; Cheng Q; Min YL; Olson EN; Siegwart DJ
    Nat Commun; 2020 Jun; 11(1):3232. PubMed ID: 32591530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Editing in CAR-T Cells Using CRISPR/Cas9 Technology.
    Andreu-Saumell I; Rodriguez-Garcia A; Guedan S
    Methods Mol Biol; 2024; 2748():151-165. PubMed ID: 38070114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-efficiency of genetic modification using CRISPR/Cpf1 system for engineered CAR-T cell therapy.
    Ding R; Chao CC; Gao Q
    Methods Cell Biol; 2022; 167():1-14. PubMed ID: 35152989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A carrier-free multiplexed gene editing system applicable for suspension cells.
    Ju A; Lee SW; Lee YE; Han KC; Kim JC; Shin SC; Park HJ; EunKyeong Kim E; Hong S; Jang M
    Biomaterials; 2019 Oct; 217():119298. PubMed ID: 31280073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delivering Cas9/sgRNA ribonucleoprotein (RNP) by lentiviral capsid-based bionanoparticles for efficient 'hit-and-run' genome editing.
    Lyu P; Javidi-Parsijani P; Atala A; Lu B
    Nucleic Acids Res; 2019 Sep; 47(17):e99. PubMed ID: 31299082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manufacturing and Delivering Genome-Editing Proteins.
    Liu J; Liang YJ; Ren PL; Gaj T
    Methods Mol Biol; 2018; 1867():253-273. PubMed ID: 30155829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleofection with Plasmid DNA for CRISPR/Cas9-Mediated Inactivation of Programmed Cell Death Protein 1 in CD133-Specific CAR T Cells.
    Hu B; Zou Y; Zhang L; Tang J; Niedermann G; Firat E; Huang X; Zhu X
    Hum Gene Ther; 2019 Apr; 30(4):446-458. PubMed ID: 29706119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment.
    Mollanoori H; Shahraki H; Rahmati Y; Teimourian S
    Hum Immunol; 2018 Dec; 79(12):876-882. PubMed ID: 30261221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modular Lentiviral Vectors for Highly Efficient Transgene Expression in Resting Immune Cells.
    Fichter C; Aggarwal A; Wong AKH; McAllery S; Mathivanan V; Hao B; MacRae H; Churchill MJ; Gorry PR; Roche M; Gray LR; Turville S
    Viruses; 2021 Jun; 13(6):. PubMed ID: 34207354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of CRISPR/Cas9 gene editing to improve chimeric antigen-receptor T cell therapy: A systematic review and meta-analysis of preclinical studies.
    Maganti HB; Kirkham AM; Bailey AJM; Shorr R; Kekre N; Pineault N; Allan DS
    Cytotherapy; 2022 Apr; 24(4):405-412. PubMed ID: 35039239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering self-deliverable ribonucleoproteins for genome editing in the brain.
    Chen K; Stahl EC; Kang MH; Xu B; Allen R; Trinidad M; Doudna JA
    Nat Commun; 2024 Feb; 15(1):1727. PubMed ID: 38409124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.