These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 34077782)

  • 1. Escaping the endosome: assessing cellular trafficking mechanisms of non-viral vehicles.
    Xu E; Saltzman WM; Piotrowski-Daspit AS
    J Control Release; 2021 Jul; 335():465-480. PubMed ID: 34077782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endosomal escape of nucleic acids from extracellular vesicles mediates functional therapeutic delivery.
    Pham TT; Chen H; Nguyen PHD; Jayasinghe MK; Le AH; Le MT
    Pharmacol Res; 2023 Feb; 188():106665. PubMed ID: 36657503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating Endosomal Escape of Caspase-3-Containing Nanomaterials Using Split GFP.
    Anson F; Liu B; Kanjilal P; Wu P; Hardy JA; Thayumanavan S
    Biomacromolecules; 2021 Mar; 22(3):1261-1272. PubMed ID: 33591168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery.
    Smith SA; Selby LI; Johnston APR; Such GK
    Bioconjug Chem; 2019 Feb; 30(2):263-272. PubMed ID: 30452233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Assessment of Endosomal Escape of Various Endocytosed Polymer-Encapsulated Molecular Cargos upon Photothermal Heating.
    Brkovic N; Zhang L; Peters JN; Kleine-Doepke S; Parak WJ; Zhu D
    Small; 2020 Nov; 16(46):e2003639. PubMed ID: 33108047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocarriers escaping from hyperacidified endo/lysosomes in cancer cells allow tumor-targeted intracellular delivery of antibodies to therapeutically inhibit c-MYC.
    Chen P; Yang W; Hong T; Miyazaki T; Dirisala A; Kataoka K; Cabral H
    Biomaterials; 2022 Sep; 288():121748. PubMed ID: 36038419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Late Endosome and Its Lipid BMP Act as Gateways for Efficient Cytosolic Access of the Delivery Agent dfTAT and Its Macromolecular Cargos.
    Erazo-Oliveras A; Najjar K; Truong D; Wang TY; Brock DJ; Prater AR; Pellois JP
    Cell Chem Biol; 2016 May; 23(5):598-607. PubMed ID: 27161484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment.
    El-Sayed A; Futaki S; Harashima H
    AAPS J; 2009 Mar; 11(1):13-22. PubMed ID: 19125334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a multifunctional PEG-based gene delivery system containing nuclear localization signals and endosomal escape peptides.
    Moore NM; Sheppard CL; Sakiyama-Elbert SE
    Acta Biomater; 2009 Mar; 5(3):854-64. PubMed ID: 18926782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-encapsulating the fusogenic peptide INF7 and molecular imaging probes in liposomes increases intracellular signal and probe retention.
    Burks SR; Legenzov EA; Martin EW; Li C; Lu W; Kao JP
    PLoS One; 2015; 10(3):e0120982. PubMed ID: 25816348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the Cellular Uptake, Endosomal Escape, and Cytosolic Entry Efficiencies of Cyclic Peptides.
    Salim H; Pei D
    Methods Mol Biol; 2022; 2371():301-316. PubMed ID: 34596855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of endosomal escape peptides on in vitro gene delivery of polyethylene glycol-based vehicles.
    Moore NM; Sheppard CL; Barbour TR; Sakiyama-Elbert SE
    J Gene Med; 2008 Oct; 10(10):1134-49. PubMed ID: 18642401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymeric vehicles for nucleic acid delivery.
    Piotrowski-Daspit AS; Kauffman AC; Bracaglia LG; Saltzman WM
    Adv Drug Deliv Rev; 2020; 156():119-132. PubMed ID: 32585159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing Targeted Drug Delivery through Cell-Specific Endosomal Escape.
    Chen P; Cabral H
    ChemMedChem; 2024 Jun; ():e202400274. PubMed ID: 38830827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ChAcNLS, a Novel Modification to Antibody-Conjugates Permitting Target Cell-Specific Endosomal Escape, Localization to the Nucleus, and Enhanced Total Intracellular Accumulation.
    Beaudoin S; Rondeau A; Martel O; Bonin MA; van Lier JE; Leyton JV
    Mol Pharm; 2016 Jun; 13(6):1915-26. PubMed ID: 27112376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced Strategies for Overcoming Endosomal/Lysosomal Barrier in Nanodrug Delivery.
    Qiu C; Xia F; Zhang J; Shi Q; Meng Y; Wang C; Pang H; Gu L; Xu C; Guo Q; Wang J
    Research (Wash D C); 2023; 6():0148. PubMed ID: 37250954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods to follow intracellular trafficking of cell-penetrating peptides.
    Pärnaste L; Arukuusk P; Zagato E; Braeckmans K; Langel Ü
    J Drug Target; 2016; 24(6):508-19. PubMed ID: 26460120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling endosomal escape using nanoparticle composition: current progress and future perspectives.
    Cupic KI; Rennick JJ; Johnston AP; Such GK
    Nanomedicine (Lond); 2019 Jan; 14(2):215-223. PubMed ID: 30511881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insertion-trigger residues differentially modulate endosomal escape by cytotoxic necrotizing factor toxins.
    Haywood EE; Handy NB; Lopez JW; Ho M; Wilson BA
    J Biol Chem; 2021 Nov; 297(5):101347. PubMed ID: 34715130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled Endolysosomal Release of Agents by pH-responsive Polymer Blend Particles.
    Zhan X; Tran KK; Wang L; Shen H
    Pharm Res; 2015 Jul; 32(7):2280-91. PubMed ID: 25592550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.