BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 34077866)

  • 1. A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms.
    Baker S; Xiang W; Atkinson I
    Comput Methods Programs Biomed; 2021 Aug; 207():106191. PubMed ID: 34077866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concatenated convolutional neural network model for cuffless blood pressure estimation using fuzzy recurrence properties of photoplethysmogram signals.
    Malayeri AB; Khodabakhshi MB
    Sci Rep; 2022 Apr; 12(1):6633. PubMed ID: 35459260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Personalized Blood Pressure Estimation Using Photoplethysmography: A Transfer Learning Approach.
    Leitner J; Chiang PH; Dey S
    IEEE J Biomed Health Inform; 2022 Jan; 26(1):218-228. PubMed ID: 34077378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques.
    Miao F; Wen B; Hu Z; Fortino G; Wang XP; Liu ZD; Tang M; Li Y
    Artif Intell Med; 2020 Aug; 108():101919. PubMed ID: 32972654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multistage deep neural network model for blood pressure estimation using photoplethysmogram signals.
    Esmaelpoor J; Moradi MH; Kadkhodamohammadi A
    Comput Biol Med; 2020 May; 120():103719. PubMed ID: 32421641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cuff-Less Blood Pressure Estimation via Small Convolutional Neural Networks.
    Wang W; Mohseni P; Kilgore K; Najafizadeh L
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1031-1034. PubMed ID: 34891464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized Deep Neural Network Model for Cuffless Blood Pressure Estimation with Photoplethysmogram Signal Only.
    Hsu YC; Li YH; Chang CC; Harfiya LN
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33020401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cuffless blood pressure estimation using chaotic features of photoplethysmograms and parallel convolutional neural network.
    Khodabakhshi MB; Eslamyeh N; Sadredini SZ; Ghamari M
    Comput Methods Programs Biomed; 2022 Nov; 226():107131. PubMed ID: 36137326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Continuous Non-Invasive Blood Pressure Prediction Method Based on Deep Sparse Residual U-Net Combined with Improved Squeeze and Excitation Skip Connections.
    Lai K; Wang X; Cao C
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Continuous Blood Pressure Estimation Method Using Photoplethysmography by GRNN-Based Model.
    Li Z; He W
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach.
    Athaya T; Choi S
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cuff-less blood pressure estimation from photoplethysmography signal and electrocardiogram.
    Yao LP; Pan ZL
    Phys Eng Sci Med; 2021 Jun; 44(2):397-408. PubMed ID: 33738778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid CNN-SVR Blood Pressure Estimation Model Using ECG and PPG Signals.
    Rastegar S; Gholam Hosseini H; Lowe A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP) from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals.
    Mahmud S; Ibtehaz N; Khandakar A; Tahir AM; Rahman T; Islam KR; Hossain MS; Rahman MS; Musharavati F; Ayari MA; Islam MT; Chowdhury MEH
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time Cuffless Continuous Blood Pressure Estimation Using Deep Learning Model.
    Li YH; Harfiya LN; Purwandari K; Lin YD
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 33007891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel CNN-LSTM Model Based Non-Invasive Cuff-Less Blood Pressure Estimation System.
    Nandi P; Rao M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():832-836. PubMed ID: 36086017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.
    Zhang Q; Zhou D; Zeng X
    Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches.
    Khalid SG; Zhang J; Chen F; Zheng D
    J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoplethysmography-based cuffless blood pressure estimation: an image encoding and fusion approach.
    Liu Y; Yu J; Mou H
    Physiol Meas; 2023 Dec; 44(12):. PubMed ID: 38099538
    [No Abstract]   [Full Text] [Related]  

  • 20. Estimating Systolic Blood Pressure Using Convolutional Neural Networks.
    Rastegar S; Gholamhosseini H; Lowe A; Mehdipour F; Lindén M
    Stud Health Technol Inform; 2019; 261():143-149. PubMed ID: 31156106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.