These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 34078091)

  • 21. Protection of hematopoietic stem cells from stress-induced exhaustion and aging.
    Singh S; Jakubison B; Keller JR
    Curr Opin Hematol; 2020 Jul; 27(4):225-231. PubMed ID: 32398455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. p38α plays differential roles in hematopoietic stem cell activity dependent on aging contexts.
    Sorimachi Y; Karigane D; Ootomo Y; Kobayashi H; Morikawa T; Otsu K; Kubota Y; Okamoto S; Goda N; Takubo K
    J Biol Chem; 2021; 296():100563. PubMed ID: 33745970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mesenchymal stromal cell-derived extracellular vesicles as cell-free biologics for the ex vivo expansion of hematopoietic stem cells.
    Budgude P; Kale V; Vaidya A
    Cell Biol Int; 2020 May; 44(5):1078-1102. PubMed ID: 32009258
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inflammation, Aging and Hematopoiesis: A Complex Relationship.
    Bousounis P; Bergo V; Trompouki E
    Cells; 2021 Jun; 10(6):. PubMed ID: 34199874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms involved in hematopoietic stem cell aging.
    Fujino T; Asada S; Goyama S; Kitamura T
    Cell Mol Life Sci; 2022 Aug; 79(9):473. PubMed ID: 35941268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hematopoietic aging: Cellular, molecular, and related mechanisms.
    Ye L; Tian C; Li Y; Pan H; Hu J; Shu L; Pan X
    Chin Med J (Engl); 2024 Jun; 137(11):1303-1312. PubMed ID: 37898877
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Germline mutations in the bone marrow microenvironment and dysregulated hematopoiesis.
    Miller LH; Qu CK; Pauly M
    Exp Hematol; 2018 Oct; 66():17-26. PubMed ID: 30076950
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The hematopoietic stem-cell niche in health and leukemia.
    Sánchez-Aguilera A; Méndez-Ferrer S
    Cell Mol Life Sci; 2017 Feb; 74(4):579-590. PubMed ID: 27436341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microenvironmental regulation of hematopoietic stem cells and its implications in leukemogenesis.
    Seshadri M; Qu CK
    Curr Opin Hematol; 2016 Jul; 23(4):339-45. PubMed ID: 27071022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AML-derived extracellular vesicles negatively regulate stem cell pool size: A step toward bone marrow failure.
    Shahrokh B; Allahbakhshian FM; Ahmad G; Fatemeh F; Hossein MM
    Curr Res Transl Med; 2023; 71(1):103375. PubMed ID: 36508911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hematopoietic Stem Cell Dynamics Are Regulated by Progenitor Demand: Lessons from a Quantitative Modeling Approach.
    Klose M; Florian MC; Gerbaulet A; Geiger H; Glauche I
    Stem Cells; 2019 Jul; 37(7):948-957. PubMed ID: 30897261
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular mechanisms underlying lineage bias in aging hematopoiesis.
    Elias HK; Bryder D; Park CY
    Semin Hematol; 2017 Jan; 54(1):4-11. PubMed ID: 28088987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extracellular vesicle-mediated remodeling of the bone marrow microenvironment in myeloid malignancies.
    Hayashi Y; Nishimura K; Tanaka A; Inoue D
    Int J Hematol; 2023 Jun; 117(6):821-829. PubMed ID: 37041345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The hematopoietic stem cell niche.
    Park D; Sykes DB; Scadden DT
    Front Biosci (Landmark Ed); 2012 Jan; 17(1):30-9. PubMed ID: 22201730
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The slippery slope of hematopoietic stem cell aging.
    Wahlestedt M; Bryder D
    Exp Hematol; 2017 Dec; 56():1-6. PubMed ID: 28943295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The hematopoietic stem cell niche in homeostasis and disease.
    Calvi LM; Link DC
    Blood; 2015 Nov; 126(22):2443-51. PubMed ID: 26468230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bone Marrow Micro-Environment in Normal and Deranged Hematopoiesis: Opportunities for Regenerative Medicine and Therapies.
    Sarkaria SM; Decker M; Ding L
    Bioessays; 2018 Mar; 40(3):. PubMed ID: 29384206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellular Niches for Hematopoietic Stem Cells and Lympho-Hematopoiesis in Bone Marrow During Homeostasis and Blood Cancers.
    Omatsu Y; Higaki K; Nagasawa T
    Curr Top Microbiol Immunol; 2021; 434():33-54. PubMed ID: 34850281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging.
    Young K; Eudy E; Bell R; Loberg MA; Stearns T; Sharma D; Velten L; Haas S; Filippi MD; Trowbridge JJ
    Cell Stem Cell; 2021 Aug; 28(8):1473-1482.e7. PubMed ID: 33848471
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MiRNAs and piRNAs from bone marrow mesenchymal stem cell extracellular vesicles induce cell survival and inhibit cell differentiation of cord blood hematopoietic stem cells: a new insight in transplantation.
    De Luca L; Trino S; Laurenzana I; Simeon V; Calice G; Raimondo S; Podestà M; Santodirocco M; Di Mauro L; La Rocca F; Caivano A; Morano A; Frassoni F; Cilloni D; Del Vecchio L; Musto P
    Oncotarget; 2016 Feb; 7(6):6676-92. PubMed ID: 26760763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.