These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 34078256)
1. Comparative analysis and prediction of nucleosome positioning using integrative feature representation and machine learning algorithms. Han GS; Li Q; Li Y BMC Bioinformatics; 2021 Jun; 22(Suppl 6):129. PubMed ID: 34078256 [TBL] [Abstract][Full Text] [Related]
2. [Identification of nucleosome positioning using support vector machine method based on comprehensive DNA sequence feature]. Cui Y; Xu Z; Li J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Jun; 37(3):496-501. PubMed ID: 32597092 [TBL] [Abstract][Full Text] [Related]
3. LeNup: learning nucleosome positioning from DNA sequences with improved convolutional neural networks. Zhang J; Peng W; Wang L Bioinformatics; 2018 May; 34(10):1705-1712. PubMed ID: 29329398 [TBL] [Abstract][Full Text] [Related]
4. NucPosPred: Predicting species-specific genomic nucleosome positioning via four different modes of general PseKNC. Jia C; Yang Q; Zou Q J Theor Biol; 2018 Aug; 450():15-21. PubMed ID: 29678692 [TBL] [Abstract][Full Text] [Related]
5. Nucleosome positioning based on DNA sequence embedding and deep learning. Han GS; Li Q; Li Y BMC Genomics; 2022 Apr; 23(Suppl 1):301. PubMed ID: 35418074 [TBL] [Abstract][Full Text] [Related]
6. An analysis and prediction of nucleosome positioning based on information content. Xing YQ; Liu GQ; Zhao XJ; Cai L Chromosome Res; 2013 Mar; 21(1):63-74. PubMed ID: 23435498 [TBL] [Abstract][Full Text] [Related]
7. ZCMM: A Novel Method Using Z-Curve Theory- Based and Position Weight Matrix for Predicting Nucleosome Positioning. Cui Y; Xu Z; Li J Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31569414 [TBL] [Abstract][Full Text] [Related]
8. iNuc-ext-PseTNC: an efficient ensemble model for identification of nucleosome positioning by extending the concept of Chou's PseAAC to pseudo-tri-nucleotide composition. Tahir M; Hayat M; Khan SA Mol Genet Genomics; 2019 Feb; 294(1):199-210. PubMed ID: 30291426 [TBL] [Abstract][Full Text] [Related]
9. A deformation energy-based model for predicting nucleosome dyads and occupancy. Liu G; Xing Y; Zhao H; Wang J; Shang Y; Cai L Sci Rep; 2016 Apr; 6():24133. PubMed ID: 27053067 [TBL] [Abstract][Full Text] [Related]
10. Prediction of nucleosome positioning by the incorporation of frequencies and distributions of three different nucleotide segment lengths into a general pseudo k-tuple nucleotide composition. Awazu A Bioinformatics; 2017 Jan; 33(1):42-48. PubMed ID: 27563027 [TBL] [Abstract][Full Text] [Related]
11. Prediction of nucleosome DNA formation potential and nucleosome positioning using increment of diversity combined with quadratic discriminant analysis. Zhao X; Pei Z; Liu J; Qin S; Cai L Chromosome Res; 2010 Nov; 18(7):777-85. PubMed ID: 20953693 [TBL] [Abstract][Full Text] [Related]
12. DeepNup: Prediction of Nucleosome Positioning from DNA Sequences Using Deep Neural Network. Zhou Y; Wu T; Jiang Y; Li Y; Li K; Quan L; Lyu Q Genes (Basel); 2022 Oct; 13(11):. PubMed ID: 36360220 [TBL] [Abstract][Full Text] [Related]
13. Using machine learning to realize genetic site screening and genomic prediction of productive traits in pigs. Xiang T; Li T; Li J; Li X; Wang J FASEB J; 2023 Jun; 37(6):e22961. PubMed ID: 37178007 [TBL] [Abstract][Full Text] [Related]
14. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage. Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794 [TBL] [Abstract][Full Text] [Related]
15. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets. Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673 [TBL] [Abstract][Full Text] [Related]
16. Prediction of nucleosome positioning in genomes: limits and perspectives of physical and bioinformatic approaches. De Santis P; Morosetti S; Scipioni A J Biomol Struct Dyn; 2010 Jun; 27(6):747-64. PubMed ID: 20232931 [TBL] [Abstract][Full Text] [Related]
17. Nucleosome positioning based on the sequence word composition. Yi XF; He ZS; Chou KC; Kong XY Protein Pept Lett; 2012 Jan; 19(1):79-90. PubMed ID: 21919856 [TBL] [Abstract][Full Text] [Related]
18. iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Guo SH; Deng EZ; Xu LQ; Ding H; Lin H; Chen W; Chou KC Bioinformatics; 2014 Jun; 30(11):1522-9. PubMed ID: 24504871 [TBL] [Abstract][Full Text] [Related]
19. Learning a weighted sequence model of the nucleosome core and linker yields more accurate predictions in Saccharomyces cerevisiae and Homo sapiens. Reynolds SM; Bilmes JA; Noble WS PLoS Comput Biol; 2010 Jul; 6(7):e1000834. PubMed ID: 20628623 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide prediction of nucleosome occupancy in maize reveals plant chromatin structural features at genes and other elements at multiple scales. Fincher JA; Vera DL; Hughes DD; McGinnis KM; Dennis JH; Bass HW Plant Physiol; 2013 Jun; 162(2):1127-41. PubMed ID: 23572549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]