BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34078670)

  • 1. High-throughput developability assays enable library-scale identification of producible protein scaffold variants.
    Golinski AW; Mischler KM; Laxminarayan S; Neurock NL; Fossing M; Pichman H; Martiniani S; Hackel BJ
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34078670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence-developability mapping of affibody and fibronectin paratopes via library-scale variant characterization.
    Nielsen GH; Schmitz ZD; Hackel BJ
    Protein Eng Des Sel; 2024 Jan; 37():. PubMed ID: 38836499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting and Interpreting Protein Developability Via Transfer of Convolutional Sequence Representation.
    Golinski AW; Schmitz ZD; Nielsen GH; Johnson B; Saha D; Appiah S; Hackel BJ; Martiniani S
    ACS Synth Biol; 2023 Sep; 12(9):2600-2615. PubMed ID: 37642646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determinants of Developability and Evolvability of Synthetic Miniproteins as Ligand Scaffolds.
    McConnell A; Batten SL; Hackel BJ
    J Mol Biol; 2023 Dec; 435(24):168339. PubMed ID: 37923119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biophysical Characterization Platform Informs Protein Scaffold Evolvability.
    Golinski AW; Holec PV; Mischler KM; Hackel BJ
    ACS Comb Sci; 2019 Apr; 21(4):323-335. PubMed ID: 30681831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying developability risks for clinical progression of antibodies using high-throughput in vitro and in silico approaches.
    Jain T; Boland T; Vásquez M
    MAbs; 2023; 15(1):2200540. PubMed ID: 37072706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An accelerated surface-mediated stress assay of antibody instability for developability studies.
    Kopp MRG; Wolf Pérez AM; Zucca MV; Capasso Palmiero U; Friedrichsen B; Lorenzen N; Arosio P
    MAbs; 2020; 12(1):1815995. PubMed ID: 32954930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in silico assessment of the developability of a designed monoclonal antibody library.
    Wolf Pérez AM; Sormanni P; Andersen JS; Sakhnini LI; Rodriguez-Leon I; Bjelke JR; Gajhede AJ; De Maria L; Otzen DE; Vendruscolo M; Lorenzen N
    MAbs; 2019; 11(2):388-400. PubMed ID: 30523762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperstable Synthetic Mini-Proteins as Effective Ligand Scaffolds.
    Blanchard PL; Knick BJ; Whelan SA; Hackel BJ
    ACS Synth Biol; 2023 Dec; 12(12):3608-3622. PubMed ID: 38010428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultradilute Measurements of Self-Association for the Identification of Antibodies with Favorable High-Concentration Solution Properties.
    Starr CG; Makowski EK; Wu L; Berg B; Kingsbury JS; Gokarn YR; Tessier PM
    Mol Pharm; 2021 Jul; 18(7):2744-2753. PubMed ID: 34105965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting mutant outcome by combining deep mutational scanning and machine learning.
    Sarfati H; Naftaly S; Papo N; Keasar C
    Proteins; 2022 Jan; 90(1):45-57. PubMed ID: 34293212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies.
    Mock M; Jacobitz AW; Langmead CJ; Sudom A; Yoo D; Humphreys SC; Alday M; Alekseychyk L; Angell N; Bi V; Catterall H; Chen CC; Chou HT; Conner KP; Cook KD; Correia AR; Dykstra A; Ghimire-Rijal S; Graham K; Grandsard P; Huh J; Hui JO; Jain M; Jann V; Jia L; Johnstone S; Khanal N; Kolvenbach C; Narhi L; Padaki R; Pelegri-O'Day EM; Qi W; Razinkov V; Rice AJ; Smith R; Spahr C; Stevens J; Sun Y; Thomas VA; van Driesche S; Vernon R; Wagner V; Walker KW; Wei Y; Winters D; Yang M; Campuzano IDG
    MAbs; 2023; 15(1):2256745. PubMed ID: 37698932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of QSAR models for
    Han X; Shih J; Lin Y; Chai Q; Cramer SM
    MAbs; 2022; 14(1):2062807. PubMed ID: 35442164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug-like antibodies with high affinity, diversity and developability directly from next-generation antibody libraries.
    Azevedo Reis Teixeira A; Erasmus MF; D'Angelo S; Naranjo L; Ferrara F; Leal-Lopes C; Durrant O; Galmiche C; Morelli A; Scott-Tucker A; Bradbury ARM
    MAbs; 2021; 13(1):1980942. PubMed ID: 34850665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developability Assessment of Engineered Monoclonal Antibody Variants with a Complex Self-Association Behavior Using Complementary Analytical and in Silico Tools.
    Shan L; Mody N; Sormani P; Rosenthal KL; Damschroder MM; Esfandiary R
    Mol Pharm; 2018 Dec; 15(12):5697-5710. PubMed ID: 30395473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning random forest for predicting oncosomatic variant NGS analysis.
    Pellegrino E; Jacques C; Beaufils N; Nanni I; Carlioz A; Metellus P; Ouafik L
    Sci Rep; 2021 Nov; 11(1):21820. PubMed ID: 34750410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of therapeutic antibody self-association using yeast-display selections and machine learning.
    Makowski EK; Chen H; Lambert M; Bennett EM; Eschmann NS; Zhang Y; Zupancic JM; Desai AA; Smith MD; Lou W; Fernando A; Tully T; Gallo CJ; Lin L; Tessier PM
    MAbs; 2022; 14(1):2146629. PubMed ID: 36433737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the performance of machine learning methods and variable selection methods for predicting difficult-to-measure traits in Holstein dairy cattle using milk infrared spectral data.
    Mota LFM; Pegolo S; Baba T; Peñagaricano F; Morota G; Bittante G; Cecchinato A
    J Dairy Sci; 2021 Jul; 104(7):8107-8121. PubMed ID: 33865589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.