BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

592 related articles for article (PubMed ID: 34079125)

  • 1. A proximity-dependent biotinylation map of a human cell.
    Go CD; Knight JDR; Rajasekharan A; Rathod B; Hesketh GG; Abe KT; Youn JY; Samavarchi-Tehrani P; Zhang H; Zhu LY; Popiel E; Lambert JP; Coyaud É; Cheung SWT; Rajendran D; Wong CJ; Antonicka H; Pelletier L; Palazzo AF; Shoubridge EA; Raught B; Gingras AC
    Nature; 2021 Jul; 595(7865):120-124. PubMed ID: 34079125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation.
    Hung V; Lam SS; Udeshi ND; Svinkina T; Guzman G; Mootha VK; Carr SA; Ting AY
    Elife; 2017 Apr; 6():. PubMed ID: 28441135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A High-Density Human Mitochondrial Proximity Interaction Network.
    Antonicka H; Lin ZY; Janer A; Aaltonen MJ; Weraarpachai W; Gingras AC; Shoubridge EA
    Cell Metab; 2020 Sep; 32(3):479-497.e9. PubMed ID: 32877691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Split-TurboID enables contact-dependent proximity labeling in cells.
    Cho KF; Branon TC; Rajeev S; Svinkina T; Udeshi ND; Thoudam T; Kwak C; Rhee HW; Lee IK; Carr SA; Ting AY
    Proc Natl Acad Sci U S A; 2020 Jun; 117(22):12143-12154. PubMed ID: 32424107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A subcellular map of the human proteome.
    Thul PJ; Åkesson L; Wiking M; Mahdessian D; Geladaki A; Ait Blal H; Alm T; Asplund A; Björk L; Breckels LM; Bäckström A; Danielsson F; Fagerberg L; Fall J; Gatto L; Gnann C; Hober S; Hjelmare M; Johansson F; Lee S; Lindskog C; Mulder J; Mulvey CM; Nilsson P; Oksvold P; Rockberg J; Schutten R; Schwenk JM; Sivertsson Å; Sjöstedt E; Skogs M; Stadler C; Sullivan DP; Tegel H; Winsnes C; Zhang C; Zwahlen M; Mardinoglu A; Pontén F; von Feilitzen K; Lilley KS; Uhlén M; Lundberg E
    Science; 2017 May; 356(6340):. PubMed ID: 28495876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BioID organelle mapping: you are the company you keep.
    Gaudreau-Lapierre A; Trinkle-Mulcahy L
    Trends Biochem Sci; 2021 Dec; 46(12):950-952. PubMed ID: 34598839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles.
    Gingras AC; Abe KT; Raught B
    Curr Opin Chem Biol; 2019 Feb; 48():44-54. PubMed ID: 30458335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotinylation-based proximity labelling proteomics: basics, applications and technical considerations.
    Niinae T; Ishihama Y; Imami K
    J Biochem; 2021 Dec; 170(5):569-576. PubMed ID: 34752609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass spectrometry-based methods for analysing the mitochondrial interactome in mammalian cells.
    Koshiba T; Kosako H
    J Biochem; 2020 Mar; 167(3):225-231. PubMed ID: 31647556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ascorbate peroxidase proximity labeling coupled with biochemical fractionation identifies promoters of endoplasmic reticulum-mitochondrial contacts.
    Cho IT; Adelmant G; Lim Y; Marto JA; Cho G; Golden JA
    J Biol Chem; 2017 Sep; 292(39):16382-16392. PubMed ID: 28760823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proximity-Dependent Biotinylation Approaches to Explore the Dynamic Compartmentalized Proteome.
    Dionne U; Gingras AC
    Front Mol Biosci; 2022; 9():852911. PubMed ID: 35309513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Versatile Lentiviral Delivery Toolkit for Proximity-dependent Biotinylation in Diverse Cell Types.
    Samavarchi-Tehrani P; Abdouni H; Samson R; Gingras AC
    Mol Cell Proteomics; 2018 Nov; 17(11):2256-2269. PubMed ID: 29991506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping of cytosol-facing organelle outer membrane proximity proteome by proximity-dependent biotinylation in living Arabidopsis cells.
    Bao X; Jia H; Zhang X; Tian S; Zhao Y; Li X; Lin P; Ma C; Wang P; Song CP; Zhu X
    Plant J; 2024 Apr; 118(1):7-23. PubMed ID: 38261530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using BioID for the Identification of Interacting and Proximal Proteins in Subcellular Compartments in Toxoplasma gondii.
    Bradley PJ; Rayatpisheh S; Wohlschlegel JA; Nadipuram SM
    Methods Mol Biol; 2020; 2071():323-346. PubMed ID: 31758461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studying Cellular Dynamics Using Proximity-Dependent Biotinylation: Somatic Cell Reprogramming.
    Samson R; Zangari F; Gingras AC
    Methods Mol Biol; 2023; 2718():23-52. PubMed ID: 37665453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proximity Dependent Biotinylation: Key Enzymes and Adaptation to Proteomics Approaches.
    Samavarchi-Tehrani P; Samson R; Gingras AC
    Mol Cell Proteomics; 2020 May; 19(5):757-773. PubMed ID: 32127388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AirID, a novel proximity biotinylation enzyme, for analysis of protein-protein interactions.
    Kido K; Yamanaka S; Nakano S; Motani K; Shinohara S; Nozawa A; Kosako H; Ito S; Sawasaki T
    Elife; 2020 May; 9():. PubMed ID: 32391793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking.
    Kaewsapsak P; Shechner DM; Mallard W; Rinn JL; Ting AY
    Elife; 2017 Dec; 6():. PubMed ID: 29239719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells.
    Soltys BJ; Gupta RS
    Exp Cell Res; 1996 Jan; 222(1):16-27. PubMed ID: 8549659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. APEX Proximity Labeling as a Versatile Tool for Biological Research.
    Nguyen TMT; Kim J; Doan TT; Lee MW; Lee M
    Biochemistry; 2020 Jan; 59(3):260-269. PubMed ID: 31718172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.