BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34079468)

  • 1. Identification of an Alternative Glycyrrhizin Metabolite Causing Liquorice-Induced Pseudohyperaldosteronism and the Development of ELISA System to Detect the Predictive Biomarker.
    Ishiuchi K; Morinaga O; Yoshino T; Mitamura M; Hirasawa A; Maki Y; Tashita Y; Kondo T; Ogawa K; Lian F; Ogawa-Ochiai K; Minamizawa K; Namiki T; Mimura M; Watanabe K; Makino T
    Front Pharmacol; 2021; 12():688508. PubMed ID: 34079468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 18β-glycyrrhetyl-3-O-sulfate would be a causative agent of licorice-induced pseudoaldosteronism.
    Ishiuchi K; Morinaga O; Ohkita T; Tian C; Hirasawa A; Mitamura M; Maki Y; Kondo T; Yasujima T; Yuasa H; Minamizawa K; Namiki T; Makino T
    Sci Rep; 2019 Feb; 9(1):1587. PubMed ID: 30733510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploration for the real causative agents of licorice-induced pseudoaldosteronism.
    Makino T
    J Nat Med; 2021 Mar; 75(2):275-283. PubMed ID: 33481180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of glycyrrhizin metabolites in humans and of a potential biomarker of liquorice-induced pseudoaldosteronism: a multi-centre cross-sectional study.
    Takahashi K; Yoshino T; Maki Y; Ishiuchi K; Namiki T; Ogawa-Ochiai K; Minamizawa K; Makino T; Nakamura T; Mimura M; Watanabe K
    Arch Toxicol; 2019 Nov; 93(11):3111-3119. PubMed ID: 31605160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of a novel glycyrrhizin metabolite as a causal candidate compound for pseudoaldosteronism.
    Morinaga O; Ishiuchi K; Ohkita T; Tian C; Hirasawa A; Mitamura M; Maki Y; Yasujima T; Yuasa H; Makino T
    Sci Rep; 2018 Oct; 8(1):15568. PubMed ID: 30348944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3-Monoglucuronyl-glycyrrhretinic acid is a substrate of organic anion transporters expressed in tubular epithelial cells and plays important roles in licorice-induced pseudoaldosteronism by inhibiting 11β-hydroxysteroid dehydrogenase 2.
    Makino T; Okajima K; Uebayashi R; Ohtake N; Inoue K; Mizukami H
    J Pharmacol Exp Ther; 2012 Aug; 342(2):297-304. PubMed ID: 22543032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrigendum: Identification of an alternative glycyrrhizin metabolite causing liquorice-induced pseudohyperaldosteronism and the development of ELISA system to detect the predictive biomarker.
    Ishiuchi K; Morinaga O; Yoshino T; Mitamura M; Hirasawa A; Maki Y; Tashita Y; Kondo T; Ogawa K; Lian F; Ogawa-Ochiai K; Minamizawa K; Namiki T; Mimura M; Watanabe K; Makino T
    Front Pharmacol; 2022; 13():1090327. PubMed ID: 36506582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3-Monoglucuronyl glycyrrhretinic acid is a possible marker compound related to licorice-induced pseudoaldosteronism.
    Makino T
    Biol Pharm Bull; 2014; 37(6):898-902. PubMed ID: 24882402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Down-regulation of a hepatic transporter multidrug resistance-associated protein 2 is involved in alteration of pharmacokinetics of glycyrrhizin and its metabolites in a rat model of chronic liver injury.
    Makino T; Ohtake N; Watanabe A; Tsuchiya N; Imamura S; Iizuka S; Inoue M; Mizukami H
    Drug Metab Dispos; 2008 Jul; 36(7):1438-43. PubMed ID: 18362159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical Risk Factors of Licorice-Induced Pseudoaldosteronism Based on Glycyrrhizin-Metabolite Concentrations: A Narrative Review.
    Yoshino T; Shimada S; Homma M; Makino T; Mimura M; Watanabe K
    Front Nutr; 2021; 8():719197. PubMed ID: 34604277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective inhibition of 11beta-hydroxysteroid dehydrogenase 1 by 18alpha-glycyrrhetinic acid but not 18beta-glycyrrhetinic acid.
    Classen-Houben D; Schuster D; Da Cunha T; Odermatt A; Wolber G; Jordis U; Kueenburg B
    J Steroid Biochem Mol Biol; 2009 Feb; 113(3-5):248-52. PubMed ID: 19429429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of UDP-glucuronosyltransferase (UGT)-mediated glycyrrhetinic acid 3-O-glucuronidation by polyphenols and triterpenoids.
    Koyama M; Shirahata T; Hirashima R; Kobayashi Y; Itoh T; Fujiwara R
    Drug Metab Pharmacokinet; 2017 Aug; 32(4):218-223. PubMed ID: 28754329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquorice for pain?
    Bell RF; Moreira VM; Kalso EA; Yli-Kauhaluoma J
    Ther Adv Psychopharmacol; 2021; 11():20451253211024873. PubMed ID: 34349979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A possible involvement of 3-monoglucuronyl-glycyrrhetinic acid, a metabolite of glycyrrhizin (GL), in GL-induced pseudoaldosteronism.
    Ohtake N; Kido A; Kubota K; Tsuchiya N; Morita T; Kase Y; Takeda S
    Life Sci; 2007 Apr; 80(17):1545-52. PubMed ID: 17331546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas chromatographic-mass spectrometric analysis of urinary glycyrrhetinic acid: an aid in diagnosing liquorice abuse.
    Kerstens MN; Guillaume CP; Wolthers BG; Dullaart RP
    J Intern Med; 1999 Dec; 246(6):539-47. PubMed ID: 10620097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of pretreatment with glycyrrhizin and glycyrrhetinic acid on the retrorsine-induced hepatotoxicity in rats.
    Lin G; Nnane IP; Cheng TY
    Toxicon; 1999 Sep; 37(9):1259-70. PubMed ID: 10400287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Acute myocardial infarction and severe hypokalaemia due to liquorice consumption during COVID-19 confinement].
    Vallejo-Garcia VE; Barrio-Rodriguez A; Heras-Benito M
    Hipertens Riesgo Vasc; 2021; 38(3):e10-e12. PubMed ID: 33715981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of glycyrrhetinic acid derivatives on hepatic and renal 11beta-hydroxysteroid dehydrogenase activities in rats.
    Shimoyama Y; Hirabayashi K; Matsumoto H; Sato T; Shibata S; Inoue H
    J Pharm Pharmacol; 2003 Jun; 55(6):811-7. PubMed ID: 12841942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The liquorice effect on the RAAS differs between the genders.
    Sigurjonsdottir HA; Axelson M; Johannsson G; Manhem K; Nyström E; Wallerstedt S
    Blood Press; 2006; 15(3):169-72. PubMed ID: 16864159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of activity and binding mode of glycyrrhetinic acid derivatives inhibiting 11β-hydroxysteroid dehydrogenase type 2.
    Kratschmar DV; Vuorinen A; Da Cunha T; Wolber G; Classen-Houben D; Doblhoff O; Schuster D; Odermatt A
    J Steroid Biochem Mol Biol; 2011 May; 125(1-2):129-42. PubMed ID: 21236343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.