These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 34079523)

  • 1. Human Pluripotent Stem Cells Go Diabetic: A Glimpse on Monogenic Variants.
    Heller S; Melzer MK; Azoitei N; Julier C; Kleger A
    Front Endocrinol (Lausanne); 2021; 12():648284. PubMed ID: 34079523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome Editing of Lineage Determinants in Human Pluripotent Stem Cells Reveals Mechanisms of Pancreatic Development and Diabetes.
    Zhu Z; Li QV; Lee K; Rosen BP; González F; Soh CL; Huangfu D
    Cell Stem Cell; 2016 Jun; 18(6):755-768. PubMed ID: 27133796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro generation of pancreatic β-cells for diabetes treatment. I. β-like cells derived from human pluripotent stem cells.
    Cierpka-Kmiec K; Wronska A; Kmiec Z
    Folia Histochem Cytobiol; 2019; 57(1):1-14. PubMed ID: 30869153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating pancreatic beta-like cells from human pluripotent stem cells.
    Lim LY; Ching C; Kong D; Chan SY; Teo AKK
    Methods Cell Biol; 2022; 170():127-146. PubMed ID: 35811096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redefining the signaling pathways from pluripotency to pancreas development: In vitro β-cell differentiation.
    Hashemitabar M; Heidari E
    J Cell Physiol; 2019 Jun; 234(6):7811-7827. PubMed ID: 30480819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monogenic Diabetes Modeling:
    Burgos JI; Vallier L; Rodríguez-Seguí SA
    Front Endocrinol (Lausanne); 2021; 12():692596. PubMed ID: 34295307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling HNF1B-associated monogenic diabetes using human iPSCs reveals an early stage impairment of the pancreatic developmental program.
    El-Khairi R; Olszanowski E; Muraro D; Madrigal P; Tilgner K; Chhatriwala M; Vyas S; Chia CY; Vallier L; Rodríguez-Seguí SA
    Stem Cell Reports; 2021 Sep; 16(9):2289-2304. PubMed ID: 34450036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How to make insulin-producing pancreatic β cells for diabetes treatment.
    Lu J; Xia Q; Zhou Q
    Sci China Life Sci; 2017 Mar; 60(3):239-248. PubMed ID: 27796637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An arduous journey from human pluripotent stem cells to functional pancreatic β cells.
    Loo LSW; Lau HH; Jasmen JB; Lim CS; Teo AKK
    Diabetes Obes Metab; 2018 Jan; 20(1):3-13. PubMed ID: 28474496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pancreatic Endoderm-Derived From Diabetic Patient-Specific Induced Pluripotent Stem Cell Generates Glucose-Responsive Insulin-Secreting Cells.
    Rajaei B; Shamsara M; Amirabad LM; Massumi M; Sanati MH
    J Cell Physiol; 2017 Oct; 232(10):2616-2625. PubMed ID: 27306424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monogenic Diabetes: What It Teaches Us on the Common Forms of Type 1 and Type 2 Diabetes.
    Yang Y; Chan L
    Endocr Rev; 2016 Jun; 37(3):190-222. PubMed ID: 27035557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demethylation of induced pluripotent stem cells from type 1 diabetic patients enhances differentiation into functional pancreatic β cells.
    Manzar GS; Kim EM; Zavazava N
    J Biol Chem; 2017 Aug; 292(34):14066-14079. PubMed ID: 28360105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards consistent generation of pancreatic lineage progenitors from human pluripotent stem cells.
    Rostovskaya M; Bredenkamp N; Smith A
    Philos Trans R Soc Lond B Biol Sci; 2015 Oct; 370(1680):20140365. PubMed ID: 26416676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of insulin-producing cells from pluripotent stem cells: from the selection of cell sources to the optimization of protocols.
    Liew CG
    Rev Diabet Stud; 2010; 7(2):82-92. PubMed ID: 21060967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishment of human pluripotent stem cell-derived pancreatic β-like cells in the mouse pancreas.
    Ma H; Wert KJ; Shvartsman D; Melton DA; Jaenisch R
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):3924-3929. PubMed ID: 29599125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing Proliferation for the Expansion of Stem Cell-Derived Pancreatic Cells: Advantages and Limitations.
    Oakie A; Nostro MC
    Front Endocrinol (Lausanne); 2021; 12():636182. PubMed ID: 33716986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reproducible preparation of spheroids of pancreatic hormone positive cells from human iPS cells: An in vitro study.
    Konagaya S; Iwata H
    Biochim Biophys Acta; 2016 Sep; 1860(9):2008-16. PubMed ID: 27180174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From pluripotent stem cells to bioengineered islets: A challenging journey to diabetes treatment.
    Carvalho AM; Nunes R; Sarmento B
    Eur J Pharm Sci; 2022 May; 172():106148. PubMed ID: 35189271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Pluripotent Stem Cells to Model Islet Defects in Diabetes.
    Balboa D; Iworima DG; Kieffer TJ
    Front Endocrinol (Lausanne); 2021; 12():642152. PubMed ID: 33828531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Differentiation of Pluripotent Stem Cells to NKX6-1+ Pancreatic Progenitors.
    McGaugh EC; Nostro MC
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.