These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34079569)

  • 1. Evolutionary Rescue as a Mechanism Allowing a Clonal Grass to Adapt to Novel Climates.
    Münzbergová Z; Vandvik V; Hadincová V
    Front Plant Sci; 2021; 12():659479. PubMed ID: 34079569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic response of a perennial grass to warm and wet environments interacts and is associated with trait means as well as plasticity.
    Münzbergová Z; Šurinová M; Biscarini F; Níčová E
    J Evol Biol; 2024 Jun; 37(6):704-716. PubMed ID: 38761114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenerational plasticity as an important mechanism affecting response of clonal species to changing climate.
    Münzbergová Z; Hadincová V
    Ecol Evol; 2017 Jul; 7(14):5236-5247. PubMed ID: 28770062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary potential of a widespread clonal grass under changing climate.
    Stojanova B; Koláříková V; Šurinová M; Klápště J; Hadincová V; Münzbergová Z
    J Evol Biol; 2019 Oct; 32(10):1057-1068. PubMed ID: 31287927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of ecophysiological traits in response of Festuca rubra to changing climate.
    Kosová V; Hájek T; Hadincová V; Münzbergová Z
    Physiol Plant; 2022 Jan; 174(1):e13608. PubMed ID: 34837234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA Methylation Can Mediate Local Adaptation and Response to Climate Change in the Clonal Plant
    Sammarco I; Münzbergová Z; Latzel V
    Front Plant Sci; 2022; 13():827166. PubMed ID: 35295625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plastic Population Effects and Conservative Leaf Traits in a Reciprocal Transplant Experiment Simulating Climate Warming in the Himalayas.
    Cui H; Töpper JP; Yang Y; Vandvik V; Wang G
    Front Plant Sci; 2018; 9():1069. PubMed ID: 30105040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the evolutionary dynamics of seasonal adaptation to novel climates in Arabidopsis thaliana.
    Fournier-Level A; Perry EO; Wang JA; Braun PT; Migneault A; Cooper MD; Metcalf CJ; Schmitt J
    Proc Natl Acad Sci U S A; 2016 May; 113(20):E2812-21. PubMed ID: 27140640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in life-history traits and their plasticities to elevational transplantation among seed families suggests potential for adaptative evolution of 15 tropical plant species to climate change.
    Ensslin A; Fischer M
    Am J Bot; 2015 Aug; 102(8):1371-9. PubMed ID: 26290559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can trait patterns along gradients predict plant community responses to climate change?
    Guittar J; Goldberg D; Klanderud K; Telford RJ; Vandvik V
    Ecology; 2016 Oct; 97(10):2791-2801. PubMed ID: 27859101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes.
    Kelly M
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1768):20180176. PubMed ID: 30966963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinal adaptation and adaptive plasticity in Artemisia californica: implications for the response of a foundation species to predicted climate change.
    Pratt JD; Mooney KA
    Glob Chang Biol; 2013 Aug; 19(8):2454-66. PubMed ID: 23505064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Out in the cold--how big and how old? Genetic fingerprinting reveals long-lived individuals withstand climatic oscillations in the arctic-alpine.
    Miller A
    Mol Ecol; 2012 Mar; 21(5):1036-7. PubMed ID: 22360454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth and development of an invasive forest insect under current and future projected temperature regimes.
    Walter JA; Thompson LM; Powers SD; Parry D; Agosta SJ; Grayson KL
    Ecol Evol; 2022 Jul; 12(6):e9017. PubMed ID: 35784073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotypic response of plants to simulated climate change in a long-term rain-manipulation experiment: a multi-species study.
    Hänel S; Tielbörger K
    Oecologia; 2015 Apr; 177(4):1015-24. PubMed ID: 25707776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhizome trait scaling relationships are modulated by growth conditions and are linked to plant fitness.
    Thakur D; Münzbergová Z
    Ann Bot; 2022 Apr; 129(5):529-540. PubMed ID: 35180294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf-trait plasticity and species vulnerability to climate change in a Mongolian steppe.
    Liancourt P; Boldgiv B; Song DS; Spence LA; Helliker BR; Petraitis PS; Casper BB
    Glob Chang Biol; 2015 Sep; 21(9):3489-98. PubMed ID: 25828794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of selection and gene flow in population differentiation at the edge vs. interior of the species range differing in climatic conditions.
    Volis S; Ormanbekova D; Shulgina I
    Mol Ecol; 2016 Apr; 25(7):1449-64. PubMed ID: 26841244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of genomic adaptation to climate in Eucalyptus microcarpa: Implications for adaptive potential to projected climate change.
    Jordan R; Hoffmann AA; Dillon SK; Prober SM
    Mol Ecol; 2017 Nov; 26(21):6002-6020. PubMed ID: 28862778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraspecific variation in stomatal traits, leaf traits and physiology reflects adaptation along aridity gradients in a South African shrub.
    Carlson JE; Adams CA; Holsinger KE
    Ann Bot; 2016 Jan; 117(1):195-207. PubMed ID: 26424782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.