These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 34079622)

  • 21. The N-methyl-D-aspartate receptor antagonist d-methadone acutely improves depressive-like behavior in the forced swim test performance of rats.
    Hanania T; Manfredi P; Inturrisi C; Vitolo OV
    Exp Clin Psychopharmacol; 2020 Apr; 28(2):196-201. PubMed ID: 31368772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting the dysfunction of glutamate receptors for the development of novel antidepressants.
    Xia CY; He J; Du LD; Yan Y; Lian WW; Xu JK; Zhang WK
    Pharmacol Ther; 2021 Oct; 226():107875. PubMed ID: 33901503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression.
    Koike H; Iijima M; Chaki S
    Behav Brain Res; 2011 Oct; 224(1):107-11. PubMed ID: 21669235
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Does increasing the ratio of AMPA-to-NMDA receptor mediated neurotransmission engender antidepressant action? Studies in the mouse forced swim and tail suspension tests.
    Andreasen JT; Gynther M; Rygaard A; Bøgelund T; Nielsen SD; Clausen RP; Mogensen J; Pickering DS
    Neurosci Lett; 2013 Jun; 546():6-10. PubMed ID: 23643996
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Change in cytokine levels is not associated with rapid antidepressant response to ketamine in treatment-resistant depression.
    Park M; Newman LE; Gold PW; Luckenbaugh DA; Yuan P; Machado-Vieira R; Zarate CA
    J Psychiatr Res; 2017 Jan; 84():113-118. PubMed ID: 27718369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relapse prevention in treatment-resistant major depressive disorder with rapid-acting antidepressants.
    Singh JB; Fedgchin M; Daly EJ; Drevets WC
    Adv Pharmacol; 2020; 89():237-259. PubMed ID: 32616208
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of eEF2 kinase in the rapid antidepressant actions of ketamine.
    Suzuki K; Monteggia LM
    Adv Pharmacol; 2020; 89():79-99. PubMed ID: 32616215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of glutamate receptors and glial cells in the pathophysiology of treatment-resistant depression.
    Kim YK; Na KS
    Prog Neuropsychopharmacol Biol Psychiatry; 2016 Oct; 70():117-26. PubMed ID: 27046518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. mGlu2/3 receptor as a novel target for rapid acting antidepressants.
    Chaki S
    Adv Pharmacol; 2020; 89():289-309. PubMed ID: 32616210
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ketamine in Major Depressive Disorder: Mechanisms and Future Perspectives.
    Shin C; Kim YK
    Psychiatry Investig; 2020 Mar; 17(3):181-192. PubMed ID: 32209965
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting inflammation in depression: Ketamine as an anti-inflammatory antidepressant in psychiatric emergency.
    Nikkheslat N
    Brain Behav Immun Health; 2021 Dec; 18():100383. PubMed ID: 34849492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two cellular hypotheses explaining the initiation of ketamine's antidepressant actions: Direct inhibition and disinhibition.
    Miller OH; Moran JT; Hall BJ
    Neuropharmacology; 2016 Jan; 100():17-26. PubMed ID: 26211972
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast-acting antidepressant activity of ketamine: highlights on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies.
    Pham TH; Gardier AM
    Pharmacol Ther; 2019 Jul; 199():58-90. PubMed ID: 30851296
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Research Progress on NMDA Receptor Enhancement Drugs for the Treatment of Depressive Disorder.
    Liu R; Liu N; Ma L; Liu Y; Huang Z; Peng X; Zhuang C; Niu J; Yu J; Du J
    CNS Drugs; 2024 Oct; ():. PubMed ID: 39379772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms of ketamine action as an antidepressant.
    Zanos P; Gould TD
    Mol Psychiatry; 2018 Apr; 23(4):801-811. PubMed ID: 29532791
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emerging role of glutamate in the pathophysiology of major depressive disorder.
    Hashimoto K
    Brain Res Rev; 2009 Oct; 61(2):105-23. PubMed ID: 19481572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular and cellular mechanisms underlying the antidepressant effects of ketamine enantiomers and its metabolites.
    Yang C; Yang J; Luo A; Hashimoto K
    Transl Psychiatry; 2019 Nov; 9(1):280. PubMed ID: 31699965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ameliorating treatment-refractory depression with intranasal ketamine: potential NMDA receptor actions in the pain circuitry representing mental anguish.
    Opler LA; Opler MG; Arnsten AF
    CNS Spectr; 2016 Feb; 21(1):12-22. PubMed ID: 25619798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. What is the mechanism of Ketamine's rapid-onset antidepressant effect? A concise overview of the surprisingly large number of possibilities.
    Strasburger SE; Bhimani PM; Kaabe JH; Krysiak JT; Nanchanatt DL; Nguyen TN; Pough KA; Prince TA; Ramsey NS; Savsani KH; Scandlen L; Cavaretta MJ; Raffa RB
    J Clin Pharm Ther; 2017 Apr; 42(2):147-154. PubMed ID: 28111761
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acute Amino Acid d-Serine Administration, Similar to Ketamine, Produces Antidepressant-like Effects through Identical Mechanisms.
    Wei IH; Chen KT; Tsai MH; Wu CH; Lane HY; Huang CC
    J Agric Food Chem; 2017 Dec; 65(49):10792-10803. PubMed ID: 29161812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.