These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 34079622)

  • 41. Effect of NMDAR antagonists in the tetrabenazine test for antidepressants: comparison with the tail suspension test.
    Skolnick P; Kos T; Czekaj J; Popik P
    Acta Neuropsychiatr; 2015 Aug; 27(4):228-34. PubMed ID: 25858023
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Application of antidepressants in depression: A systematic review and meta-analysis.
    Yuan Z; Chen Z; Xue M; Zhang J; Leng L
    J Clin Neurosci; 2020 Oct; 80():169-181. PubMed ID: 33099342
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An update on NMDA antagonists in depression.
    Pochwat B; Nowak G; Szewczyk B
    Expert Rev Neurother; 2019 Nov; 19(11):1055-1067. PubMed ID: 31328587
    [No Abstract]   [Full Text] [Related]  

  • 44. Disinhibition of CA1 pyramidal cells by low-dose ketamine and other antagonists with rapid antidepressant efficacy.
    Widman AJ; McMahon LL
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):E3007-E3016. PubMed ID: 29531088
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular and Cellular Mechanisms of Rapid-Acting Antidepressants Ketamine and Scopolamine.
    Wohleb ES; Gerhard D; Thomas A; Duman RS
    Curr Neuropharmacol; 2017; 15(1):11-20. PubMed ID: 26955968
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Targeting glutamate signalling in depression: progress and prospects.
    Murrough JW; Abdallah CG; Mathew SJ
    Nat Rev Drug Discov; 2017 Jul; 16(7):472-486. PubMed ID: 28303025
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of copper in depression. Relationship with ketamine treatment.
    Słupski J; Cubała WJ; Górska N; Gałuszko-Węgielnik M; Wiglusz MS
    Med Hypotheses; 2018 Oct; 119():14-17. PubMed ID: 30122482
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of glutamate on the action of antidepressants.
    Hashimoto K
    Prog Neuropsychopharmacol Biol Psychiatry; 2011 Aug; 35(7):1558-68. PubMed ID: 20600468
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lateral Habenular Burst Firing as a Target of the Rapid Antidepressant Effects of Ketamine.
    Cui Y; Hu S; Hu H
    Trends Neurosci; 2019 Mar; 42(3):179-191. PubMed ID: 30823984
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A hypothesis of monoamine (5-HT) - Glutamate/GABA long neural circuit: Aiming for fast-onset antidepressant discovery.
    Li YF
    Pharmacol Ther; 2020 Apr; 208():107494. PubMed ID: 31991195
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Could ketamine be the answer to treating treatment-resistant major depressive disorder?
    Ramadan AM; Mansour IA
    Gen Psychiatr; 2020; 33(5):e100227. PubMed ID: 32875273
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Treatment-Resistant Major Depression: Rationale for NMDA Receptors as Targets and Nitrous Oxide as Therapy.
    Zorumski CF; Nagele P; Mennerick S; Conway CR
    Front Psychiatry; 2015; 6():172. PubMed ID: 26696909
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of ketamine in treatment-resistant depression: a systematic review.
    Serafini G; Howland RH; Rovedi F; Girardi P; Amore M
    Curr Neuropharmacol; 2014 Sep; 12(5):444-61. PubMed ID: 25426012
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dopamine D2/D3 but not dopamine D1 receptors are involved in the rapid antidepressant-like effects of ketamine in the forced swim test.
    Li Y; Zhu ZR; Ou BC; Wang YQ; Tan ZB; Deng CM; Gao YY; Tang M; So JH; Mu YL; Zhang LQ
    Behav Brain Res; 2015 Feb; 279():100-5. PubMed ID: 25449845
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Glutamatergic Neurotransmission: Pathway to Developing Novel Rapid-Acting Antidepressant Treatments.
    Kadriu B; Musazzi L; Henter ID; Graves M; Popoli M; Zarate CA
    Int J Neuropsychopharmacol; 2019 Feb; 22(2):119-135. PubMed ID: 30445512
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Serotonin Transporter and Plasma Membrane Monoamine Transporter Are Necessary for the Antidepressant-Like Effects of Ketamine in Mice.
    Bowman MA; Vitela M; Clarke KM; Koek W; Daws LC
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33066466
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A brief history of antidepressant drug development: from tricyclics to beyond ketamine.
    Pereira VS; Hiroaki-Sato VA
    Acta Neuropsychiatr; 2018 Dec; 30(6):307-322. PubMed ID: 29388517
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rapid-onset antidepressant action of ketamine: potential revolution in understanding and future pharmacologic treatment of depression.
    Drewniany E; Han J; Hancock C; Jones RL; Lim J; Nemat Gorgani N; Sperry JK; Yu HJ; Raffa RB
    J Clin Pharm Ther; 2015 Apr; 40(2):125-30. PubMed ID: 25545040
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Age dependence of the rapid antidepressant and synaptic effects of acute NMDA receptor blockade.
    Nosyreva E; Autry AE; Kavalali ET; Monteggia LM
    Front Mol Neurosci; 2014; 7():94. PubMed ID: 25520615
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ketamine's antidepressant effect is mediated by energy metabolism and antioxidant defense system.
    Weckmann K; Deery MJ; Howard JA; Feret R; Asara JM; Dethloff F; Filiou MD; Iannace J; Labermaier C; Maccarrone G; Webhofer C; Teplytska L; Lilley K; Müller MB; Turck CW
    Sci Rep; 2017 Nov; 7(1):15788. PubMed ID: 29150633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.