BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34079717)

  • 1. Deep transfer learning based on magnetic resonance imaging can improve the diagnosis of lymph node metastasis in patients with rectal cancer.
    Li J; Zhou Y; Wang P; Zhao H; Wang X; Tang N; Luan K
    Quant Imaging Med Surg; 2021 Jun; 11(6):2477-2485. PubMed ID: 34079717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Diagnostic accuracy of 3.0T high-resolution MRI for assessment mesorectal lymph node metastases in patients with rectal cancer].
    Chen Y; Yang X; Lu B; Xiao X; Zhuang X; Yu S
    Zhonghua Wei Chang Wai Ke Za Zhi; 2018 Jul; 21(7):786-792. PubMed ID: 30051447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [High definition MRI rectal lymph node aided diagnostic system based on deep neural network].
    Zhou YP; Li S; Zhang XX; Zhang ZD; Gao YX; Ding L; Lu Y
    Zhonghua Wai Ke Za Zhi; 2019 Feb; 57(2):108-113. PubMed ID: 30704213
    [No Abstract]   [Full Text] [Related]  

  • 4. A logistic model including risk factors for lymph node metastasis can improve the accuracy of magnetic resonance imaging diagnosis of rectal cancer.
    Ogawa S; Itabashi M; Hirosawa T; Hashimoto T; Bamba Y; Kameoka S
    Asian Pac J Cancer Prev; 2015; 16(2):707-12. PubMed ID: 25684512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based fully automated detection and segmentation of lymph nodes on multiparametric-mri for rectal cancer: A multicentre study.
    Zhao X; Xie P; Wang M; Li W; Pickhardt PJ; Xia W; Xiong F; Zhang R; Xie Y; Jian J; Bai H; Ni C; Gu J; Yu T; Tang Y; Gao X; Meng X
    EBioMedicine; 2020 Jun; 56():102780. PubMed ID: 32512507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial intelligence for pre-operative lymph node staging in colorectal cancer: a systematic review and meta-analysis.
    Bedrikovetski S; Dudi-Venkata NN; Kroon HM; Seow W; Vather R; Carneiro G; Moore JW; Sammour T
    BMC Cancer; 2021 Sep; 21(1):1058. PubMed ID: 34565338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multicenter Evaluation of a Weakly Supervised Deep Learning Model for Lymph Node Diagnosis in Rectal Cancer at MRI.
    Xia W; Li D; He W; Pickhardt PJ; Jian J; Zhang R; Zhang J; Song R; Tong T; Yang X; Gao X; Cui Y
    Radiol Artif Intell; 2024 Mar; 6(2):e230152. PubMed ID: 38353633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of lymph node metastasis in rectal cancer: comparison between shear-wave elastography based ultrasomics and MRI.
    Xian MF; Zheng X; Xu JB; Li X; Chen LD; Wang W
    Diagn Interv Radiol; 2021 May; 27(3):424-431. PubMed ID: 34003129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An MRI-based multi-objective radiomics model predicts lymph node status in patients with rectal cancer.
    Li J; Zhou Y; Wang X; Zhou M; Chen X; Luan K
    Abdom Radiol (NY); 2021 May; 46(5):1816-1824. PubMed ID: 33241428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preoperative volumetric synthetic magnetic resonance imaging of the primary tumor for a more accurate prediction of lymph node metastasis in rectal cancer.
    Zhao L; Liang M; Shi Z; Xie L; Zhang H; Zhao X
    Quant Imaging Med Surg; 2021 May; 11(5):1805-1816. PubMed ID: 33936966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of F-18 FDG PET/CT with optimal cut-offs of maximum standardized uptake value according to size for diagnosis of regional lymph node metastasis in patients with rectal cancer.
    Bae SU; Won KS; Song BI; Jeong WK; Baek SK; Kim HW
    Cancer Imaging; 2018 Sep; 18(1):32. PubMed ID: 30217167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical relevance of morphologic MRI criteria for the assessment of lymph nodes in patients with rectal cancer.
    Doyon F; Attenberger UI; Dinter DJ; Schoenberg SO; Post S; Kienle P
    Int J Colorectal Dis; 2015 Nov; 30(11):1541-6. PubMed ID: 26260478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nodal staging in the rectal cancer follow-up MRI after chemoradiotherapy: use of morphology, size, and diffusion criteria.
    Fornell-Perez R; Perez-Alonso E; Aleman-Flores P; Lozano-Rodriguez A; Loro-Ferrer JF
    Clin Radiol; 2020 Feb; 75(2):100-107. PubMed ID: 31515052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction Model Combining Clinical and MR Data for Diagnosis of Lymph Node Metastasis in Patients With Rectal Cancer.
    Xu H; Zhao W; Guo W; Cao S; Gao C; Song T; Yang L; Liu Y; Han Y; Zhang L; Wang K
    J Magn Reson Imaging; 2021 Mar; 53(3):874-883. PubMed ID: 32978993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. T1 Mapping and Amide Proton Transfer Weighted Imaging for Predicting Lymph Node Metastasis in Patients with Rectal Cancer.
    Wang Y; Chen A; Hu W; Liu Y; Wang J; Lin L; Song Q; Liu A
    Curr Med Imaging; 2024 Feb; ():. PubMed ID: 38343051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fat fractions from high-resolution 3D radial Dixon MRI for predicting metastatic axillary lymph nodes in breast cancer patients.
    Buus TW; Sivesgaard K; Fris TL; Christiansen PM; Jensen AB; Pedersen EM
    Eur J Radiol Open; 2020; 7():100284. PubMed ID: 33204769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion-weighted imaging for evaluating lymph node eradication after neoadjuvant chemoradiation therapy in locally advanced rectal cancer.
    Ryu KH; Kim SH; Yoon JH; Lee Y; Paik JH; Lim YJ; Lee KH
    Acta Radiol; 2016 Feb; 57(2):133-41. PubMed ID: 25638800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diagnostic utility of metabolic parameters on FDG PET/CT for lymph node metastasis in patients with cN2 non-small cell lung cancer.
    Nakanishi K; Nakamura S; Sugiyama T; Kadomatsu Y; Ueno H; Goto M; Ozeki N; Fukui T; Iwano S; Chen-Yoshikawa TF
    BMC Cancer; 2021 Sep; 21(1):983. PubMed ID: 34474680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a Deep Learning Model to Identify Lymph Node Metastasis on Magnetic Resonance Imaging in Patients With Cervical Cancer.
    Wu Q; Wang S; Zhang S; Wang M; Ding Y; Fang J; Wu Q; Qian W; Liu Z; Sun K; Jin Y; Ma H; Tian J
    JAMA Netw Open; 2020 Jul; 3(7):e2011625. PubMed ID: 32706384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How accurate is
    Erdem S; Simsek DH; Degirmenci E; Aydin R; Bagbudar S; Ozluk Y; Sanli Y; Sanli O; Ozcan F
    Urol Oncol; 2022 Jan; 40(1):6.e1-6.e9. PubMed ID: 34400066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.