These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34079905)

  • 21. Direct Observation of Amorphous Precursor Phases in the Nucleation of Protein-Metal-Organic Frameworks.
    Ogata AF; Rakowski AM; Carpenter BP; Fishman DA; Merham JG; Hurst PJ; Patterson JP
    J Am Chem Soc; 2020 Jan; 142(3):1433-1442. PubMed ID: 31913610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding Substrate-Guided Assembly in van der Waals Epitaxy by
    Liu C; Lin YC; Yoon M; Yu Y; Puretzky AA; Rouleau CM; Chisholm MF; Xiao K; Eres G; Duscher G; Geohegan DB
    ACS Nano; 2021 May; 15(5):8638-8652. PubMed ID: 33929816
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystalline mesophases: Structure, mobility, and pharmaceutical properties.
    Shalaev E; Wu K; Shamblin S; Krzyzaniak JF; Descamps M
    Adv Drug Deliv Rev; 2016 May; 100():194-211. PubMed ID: 27067607
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phospholipid molecular species influence crystal habits and transition sequences of metastable intermediates during cholesterol crystallization from bile salt-rich model bile.
    Konikoff FM; Cohen DE; Carey MC
    J Lipid Res; 1994 Jan; 35(1):60-70. PubMed ID: 8138723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trapping Amorphous Intermediates of Carbonates - A Combined Total Scattering and NMR Study.
    Leukel S; Panthöfer M; Mondeshki M; Kieslich G; Wu Y; Krautwurst N; Tremel W
    J Am Chem Soc; 2018 Nov; 140(44):14638-14646. PubMed ID: 30351016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Moisture-induced surface crystallization of spray-dried amorphous lactose particles studied by atomic force microscopy.
    Mahlin D; Berggren J; Alderborn G; Engström S
    J Pharm Sci; 2004 Jan; 93(1):29-37. PubMed ID: 14648633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nucleation of crystals from solution: classical and two-step models.
    Erdemir D; Lee AY; Myerson AS
    Acc Chem Res; 2009 May; 42(5):621-9. PubMed ID: 19402623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Imaging supramolecular aggregates in bile models and human bile.
    Kaplun A; Konikoff FM; Eitan A; Rubin M; Vilan A; Lichtenberg D; Gilat T; Talmon Y
    Microsc Res Tech; 1997 Oct; 39(1):85-96. PubMed ID: 9329021
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Imaging and diffraction of protein crystallization using TEM.
    Gomery K; Humphrey EC; Herring R
    Microscopy (Oxf); 2013 Jun; 62(3):363-8. PubMed ID: 23250893
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microstructural evolution of lipid aggregates in nucleating model and human biles visualized by cryogenic transmission electron microscopy.
    Konikoff FM; Danino D; Weihs D; Rubin M; Talmon Y
    Hepatology; 2000 Feb; 31(2):261-8. PubMed ID: 10655245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystallization pathways and kinetics of carbamazepine-nicotinamide cocrystals from the amorphous state by in situ thermomicroscopy, spectroscopy, and calorimetry studies.
    Seefeldt K; Miller J; Alvarez-Núñez F; Rodríguez-Hornedo N
    J Pharm Sci; 2007 May; 96(5):1147-58. PubMed ID: 17455346
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solid-to-Solid Crystallization of Organic Thin Films: Classical and Nonclassical Pathways.
    Wei Z; Fan J; Dai C; Pang Z; Han S
    ACS Omega; 2018 Jun; 3(6):6874-6879. PubMed ID: 31458855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning crystallization pathways through sequence engineering of biomimetic polymers.
    Ma X; Zhang S; Jiao F; Newcomb CJ; Zhang Y; Prakash A; Liao Z; Baer MD; Mundy CJ; Pfaendtner J; Noy A; Chen CL; De Yoreo JJ
    Nat Mater; 2017 Jul; 16(7):767-774. PubMed ID: 28414316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonclassical nucleation pathways in protein crystallization.
    Zhang F
    J Phys Condens Matter; 2017 Nov; 29(44):443002. PubMed ID: 28984274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solid-State Phase Transformation and Self-Assembly of Amorphous Nanoparticles into Higher-Order Mineral Structures.
    Von Euw S; Azaïs T; Manichev V; Laurent G; Pehau-Arnaudet G; Rivers M; Murali N; Kelly DJ; Falkowski PG
    J Am Chem Soc; 2020 Jul; 142(29):12811-12825. PubMed ID: 32568532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On Grounds of the Memory Effect in Amorphous and Crystalline Apatite: Kinetics of Crystallization and Biological Response.
    Uskoković V; Tang S; Wu VM
    ACS Appl Mater Interfaces; 2018 May; 10(17):14491-14508. PubMed ID: 29625010
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-classical crystallisation pathway directly observed for a pharmaceutical crystal via liquid phase electron microscopy.
    Cookman J; Hamilton V; Hall SR; Bangert U
    Sci Rep; 2020 Nov; 10(1):19156. PubMed ID: 33154480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystallization Kinetics of an Amorphous Pharmaceutical Compound Using Fluorescence-Lifetime-Imaging Microscopy.
    Rautaniemi K; Vuorimaa-Laukkanen E; Strachan CJ; Laaksonen T
    Mol Pharm; 2018 May; 15(5):1964-1971. PubMed ID: 29584954
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular mobility study of amorphous and crystalline phases of a pharmaceutical product by thermally stimulated current spectrometry.
    Boutonnet-Fagegaltier N; Menegotto J; Lamure A; Duplaa H; Caron A; Lacabanne C; Bauer M
    J Pharm Sci; 2002 Jun; 91(6):1548-60. PubMed ID: 12115853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Organic Heterojunctions Formed by Interfacing Two Single Crystals from a Mixed Solution.
    Li H; Wu J; Takahashi K; Ren J; Wu R; Cai H; Wang J; Xin HL; Miao Q; Yamada H; Chen H; Li H
    J Am Chem Soc; 2019 Jun; 141(25):10007-10015. PubMed ID: 31244137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.