These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 34080064)
1. Fine hyphal coils in the liverwort Cephaloziella varians increase in frequency in response to experimental warming in maritime Antarctica. Newsham KK Mycorrhiza; 2021 Jul; 31(4):519-525. PubMed ID: 34080064 [TBL] [Abstract][Full Text] [Related]
2. Structural changes to a mycothallus along a latitudinal transect through the maritime and sub-Antarctic. Newsham KK Mycorrhiza; 2011 Apr; 21(3):231-6. PubMed ID: 20628887 [TBL] [Abstract][Full Text] [Related]
3. Widespread association between the ericoid mycorrhizal fungus Rhizoscyphus ericae and a leafy liverwort in the maritime and sub-Antarctic. Upson R; Read DJ; Newsham KK New Phytol; 2007; 176(2):460-471. PubMed ID: 17888123 [TBL] [Abstract][Full Text] [Related]
4. Sebacinales are associates of the leafy liverwort Lophozia excisa in the southern maritime Antarctic. Newsham KK; Bridge PD Mycorrhiza; 2010 Jun; 20(5):307-13. PubMed ID: 19921285 [TBL] [Abstract][Full Text] [Related]
5. Experimental warming increases fungal alpha diversity in an oligotrophic maritime Antarctic soil. Newsham KK; Misiak M; Goodall-Copestake WP; Dahl MS; Boddy L; Hopkins DW; Davey ML Front Microbiol; 2022; 13():1050372. PubMed ID: 36439821 [TBL] [Abstract][Full Text] [Related]
6. Survival of antarctic soil metazoans at -80 degree C for six years. Newsham KK; Maslen NR; McInnes SJ Cryo Letters; 2006; 27(5):291-4. PubMed ID: 17256060 [TBL] [Abstract][Full Text] [Related]
7. Bacterial Community Composition and Diversity Respond to Nutrient Amendment but Not Warming in a Maritime Antarctic Soil. Newsham KK; Tripathi BM; Dong K; Yamamoto N; Adams JM; Hopkins DW Microb Ecol; 2019 Nov; 78(4):974-984. PubMed ID: 30989354 [TBL] [Abstract][Full Text] [Related]
8. Filamentous ascomycetes inhabiting the rhizoid environment of the liverwort Cephaloziella varians in Antarctica are assessed by direct PCR and cloning. Jumpponen A; Newsham KK; Neises DJ Mycologia; 2003; 95(3):457-66. PubMed ID: 21156634 [TBL] [Abstract][Full Text] [Related]
9. The effect of environmental change on vascular plant and cryptogam communities from the Falkland Islands and the Maritime Antarctic. Bokhorst S; Huiskes A; Convey P; Aerts R BMC Ecol; 2007 Dec; 7():15. PubMed ID: 18093288 [TBL] [Abstract][Full Text] [Related]
10. Hyphal coil morphology and its relationship to thromboplerous hyphae in Putra IP; Aimi T; Shimomura N Mycologia; 2023; 115(2):216-224. PubMed ID: 36730908 [TBL] [Abstract][Full Text] [Related]
11. Angiosperm symbioses with non-mycorrhizal fungal partners enhance N acquisition from ancient organic matter in a warming maritime Antarctic. Hill PW; Broughton R; Bougoure J; Havelange W; Newsham KK; Grant H; Murphy DV; Clode P; Ramayah S; Marsden KA; Quilliam RS; Roberts P; Brown C; Read DJ; Deluca TH; Bardgett RD; Hopkins DW; Jones DL Ecol Lett; 2019 Dec; 22(12):2111-2119. PubMed ID: 31621153 [TBL] [Abstract][Full Text] [Related]
12. Does warming by open-top chambers induce change in the root-associated fungal community of the arctic dwarf shrub Cassiope tetragona (Ericaceae)? Lorberau KE; Botnen SS; Mundra S; Aas AB; Rozema J; Eidesen PB; Kauserud H Mycorrhiza; 2017 Jul; 27(5):513-524. PubMed ID: 28349216 [TBL] [Abstract][Full Text] [Related]
13. In situ warming in the Antarctic: effects on growth and photosynthesis in Antarctic vascular plants. Sáez PL; Cavieres LA; Galmés J; Gil-Pelegrín E; Peguero-Pina JJ; Sancho-Knapik D; Vivas M; Sanhueza C; Ramírez CF; Rivera BK; Corcuera LJ; Bravo LA New Phytol; 2018 Jun; 218(4):1406-1418. PubMed ID: 29682746 [TBL] [Abstract][Full Text] [Related]
14. Diversity and cold adaptation of culturable endophytic fungi from bryophytes in the Fildes Region, King George Island, maritime Antarctica. Zhang T; Zhang YQ; Liu HY; Wei YZ; Li HL; Su J; Zhao LX; Yu LY FEMS Microbiol Lett; 2013 Apr; 341(1):52-61. PubMed ID: 23350605 [TBL] [Abstract][Full Text] [Related]
15. What Antarctic Plants Can Tell Us about Climate Changes: Temperature as a Driver for Metabolic Reprogramming. Bertini L; Cozzolino F; Proietti S; Falconieri GS; Iacobucci I; Salvia R; Falabella P; Monti M; Caruso C Biomolecules; 2021 Jul; 11(8):. PubMed ID: 34439761 [TBL] [Abstract][Full Text] [Related]
17. Passive warming effect on soil microbial community and humic substance degradation in maritime Antarctic region. Kim D; Park HJ; Kim JH; Youn UJ; Yang YH; Casanova-Katny A; Vargas CM; Venegas EZ; Park H; Hong SG J Basic Microbiol; 2018 Jun; 58(6):513-522. PubMed ID: 29570816 [TBL] [Abstract][Full Text] [Related]
18. Variable temperature effects of Open Top Chambers at polar and alpine sites explained by irradiance and snow depth. Bokhorst S; Huiskes A; Aerts R; Convey P; Cooper EJ; Dalen L; Erschbamer B; Gudmundsson J; Hofgaard A; Hollister RD; Johnstone J; Jónsdóttir IS; Lebouvier M; Van de Vijver B; Wahren CH; Dorrepaal E Glob Chang Biol; 2013 Jan; 19(1):64-74. PubMed ID: 23504721 [TBL] [Abstract][Full Text] [Related]
19. Inhibitory effects of climate change on the growth and extracellular enzyme activities of a widespread Antarctic soil fungus. Misiak M; Goodall-Copestake WP; Sparks TH; Worland MR; Boddy L; Magan N; Convey P; Hopkins DW; Newsham KK Glob Chang Biol; 2020 Nov; 27(5):1111-25. PubMed ID: 33230837 [TBL] [Abstract][Full Text] [Related]
20. A novel ascomycetous endophytic association in the rhizoids of the leafy liverwort family, Schistochilaceae (Jungermanniidae, Hepaticopsida). Pressel S; Ligrone R; Duckett JG; Davis EC Am J Bot; 2008 May; 95(5):531-41. PubMed ID: 21632379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]